Nuclear Magnetic Resonance Studies of Helical Dipyrrromethene–Zinc Complexes

Alison Thompson and David Dolphin*

Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, Canada
david@dolphin.chem.ubc.ca

Received March 9, 2000

ABSTRACT

Analysis of helical chirality within dinuclear dipyrrromethene–Zn(II) complexes has been achieved with the use of 1H NMR spectroscopy. The use of AgFOD and chiral lanthanide shift reagents gives fully resolved resonances attributable to two diastereomeric helical complexes.

Given the range of synthetic helical structures now known, recent efforts have been directed toward the analysis of optical and chiral properties of helical structures. For example, Mizutani has studied the effects of helical chirality control in zinc–bilirubin monomers1 and dimers2 using CD and 1H NMR. Similarly, Lightner3 has used CD to investigate the influence of intramolecular hydrogen bonding upon helically chiral bilirubin analogues. The stability of dextro- and levorotatory iron(II) bis(terpyridyl) helical complexes has been demonstrated using CD by Sauvage and Keene,4 while Constable5 has investigated diastereoselective formation of enantiomeric (M) and (P) double helicates by dicopper(I) complexation of chiral 2,2′:6′:2″-terpyridines by 1H NMR and specific optical rotation measurements. Additionally, Wang6 has studied the stability toward racemization of helically twisted α-terphenyl helicene analogues using optical rotation and CD. With the exception of studies involving diastereomeric helices containing chiral auxiliaries, the purity of helical compounds has not been studied by 1H NMR since the two helical enantiomers would, of course, have identical spectra.

Although CD and specific optical rotation methods can reveal extremely useful information concerning enantioselectively/helically pure molecules, both of these methods give the summative effect representative of both optical isomers present in a nonenantiomerically pure sample. It is only by comparison with a sample of unequivocal enantiomeric purity that useful correlation of optical purity can be drawn. Ideally, a method of simultaneously observing both helical enantiomers is required. We herein report our preliminary use of silver(I)–lanthanide(III) shift reagents for the 1H NMR analysis of helical structures containing aromatic moieties.

Our ongoing studies\(^7\) involve the design and synthesis of dipyrromethene–zinc complexes using self-assembly.\(^8\) Dipyrromethenes (DPMs)\(^1\) are fully conjugated flat bipyrrolic mono-anionic structures and are excellent ligands for chelation with metal ions. This paper reports our studies involving the use of dinuclear complex (DNC)\(^3\) which is formed by complexation of ligand (Lig)\(^2\) to Zn(II) (Scheme 1a).\(^{11}\) We have shown that similar α-linked bis(dipyrromethene) complexes crystallize in a binuclear helical arrangement\(^7b\) and X-ray analysis confirmed the helical structure of 3, as denoted in Scheme 1b.\(^{11}\) Helix 3 is obviously formed as a racemic mixture of (M) and (P) helices, since no asymmetric induction operates during the self-assembly process. We wished to simultaneously observe the two helical enantiomers of complex 3 to both confirm the inherent chirality and develop a new method with which to investigate helical chirality control for future studies.

Mixed silver(I)–lanthanide(III) binuclear shift reagents with chiral ligands can be useful for determining the enantiomeric excess of chiral alkenes, alkynes, allenes, and arenes.\(^12\) The silver cation binds to soft Lewis bases (such as double bonds), while the paramagnetic lanthanide induces shifts in the NMR spectrum of the donor compound. In effect, the silver cation acts as a bridge between the double bond and the lanthanide shift reagent. The chiral–chiral interaction of the molecule studied and the lanthanide ligands results in signal splitting due to the existence of dynamic diastereoisomers under fast exchange conditions and different shift consequences for each diastereoisomer.

A partial \(^1\)H 200 MHz NMR spectrum of complex 3 is shown in Figure 1a.\(^{13}\) The signals at 7.06 and 6.93 ppm are due to the \(\text{R}\)- and meso-hydrogens respectively, as determined by their coupling constant (J) of 7.6 Hz.

![Scheme 1](image)

Scheme 1

Figure 1. \(^1\)H NMR 200 MHz spectra\(^{13}\) in CDCl\(_3\) of (a) 3, (b) 0.035 M 3, 0.035 M AgFOD and 0.035 M Eu(tfc)\(_3\), (c) 0.07 M 3, 0.035 M AgFOD and 0.035 M Eu(tfc)\(_3\), and (d) 0.07 M 3, 0.07 M AgFOD and 0.07 M Eu(tfc).

mined by NOE experiments. Figure 1b shows the spectrum when 0.035 M each of 3, AgFOD [(6,6,7,7,8,8,8-heptafluoro-2,2-dimethyl-3,5-octanedionato)silver] and Eu(tfc)_3 [tris(trifluoromethylhydroxymethylene)-(+)-camphor europium] were measured in CDCl_3. Encouragingly, slight signal separation (Δδα 0.02 ppm at α-position) and downfield shifting was observed. Reasoning that increased concentrations would favor the trigomolecular association process, we increased the concentration of 3 to 0.07 M (effective molarity of dipyrromethene ligand 0.28 M, as there are four equivalent dipyrromethene units present within 3), and Δδα increased to 0.03 ppm (Figure 1c). Increasing the concentration of all components to 0.07 M as shown in Figure 1d resulted in increased downfield shifting and splitting (Δδα 0.05 ppm). Two signals due to methyl groups are also slightly resolved under these conditions.

After useful concentration conditions for these experiments were identified, the chiral lanthanide shift reagent was varied. The use of Eu(hfc)_3 [tris(3-(heptafluoropropylhydroxymethylene europium)-(−)-camphor)] and Yb(hfc)_3 with AgFOD did not result in increased Δδ values, while Pr(tfc)_3 and Pr(hfc)_3 gave no signal separation, although line broadening and signal shifting were observed. Fortunately, Yb(tfc)_3 with AgFOD and complex 3, all at 0.07 M, gave Δδα 0.20 ppm, as shown in Figure 2b, accompanied by significant splitting and shifting in other areas of the spectrum.

Yb(III) chelates have previously been observed to give larger downfield shifts than Eu(III) reagents. This is crucial to our work, since Figure 2b shows that the separated α-signals are both shifted sufficiently downfield to be completely removed from the solvent CHCl_3 signal. Importantly, baseline separation of the split signals is complete, allowing for accurate individual integration of the resolved signals. For Figure 2b, the signals at 7.98 and 7.78 ppm integrate to a ratio of 1.00:1.05 respectively, while the signals at 3.76 and 3.59 ppm integrate to a ratio of 1.00:1.06. This confirms the presence of equal populations of the enantiomeric species in the racemic sample of 3 and validates the integration method.

In the absence of AgFOD, no signal shifting or splitting was observed. In the presence of achiral Yb(III) compounds YbFOD and Yb(tmhd)_3 [tris(2,2,6,6-tetramethyl-3,5-heptanedionato)ytterbium], instead of Yb(tfc)_3, signal splitting was not observed. The results of these control experiments confirm the existence of a dipyrromethene–Ag(I)–Yb(III) “sandwich”, with a chiral–chiral interaction between the dipyrromethene complex and the chiral ligands of the Yb(III) reagent.

It is evident that the two sets of signals seen in Figure 2b are due to the presence of diastereomeric dipyrromethene–Ag(I)–Yb(III) structures under dynamic equilibrium, indicative of the two enantiomeric helices of 3. To determine whether the two helices of 3 interconvert in solution a 1H 2D EXSY experiment was performed under the same conditions as those used to obtain the spectrum shown in Figure 2b. Cross signals were not observed between any of the signals, indicating that the diastereomeric structures, and hence the enantiomeric helices of 3, do not interconvert under the experimental conditions. Over a period of 2 h, decomposition of the Ag(I) reagent was seen to slowly occur by deposition of Ag(s) on the inside of the NMR tube, accompanied by slow upfield shifting and a decrease in separation of all signals. Eventually the signals due to pure 3, as shown in Figure 1a, were returned. This effect necessitated the employment of rapid experiments and prevented the use of investigative variable-temperature NMR spectroscopy since the rate of decomposition increased with temperature.

Silver–aromatic bond strengths and stabilities are very dependent upon steric factors, with the silver cation preferentially occupying a complexation site furthest removed from steric encumbrances. This presumably accounts for our observations of largest shifting and splitting of the signal due to the α-hydrogens for the AgFOD/Yb(tfc)_3 experiments. The exact nature of the dipyrromethene–silver(I)–

![Figure 2](image_url)

Figure 2. 1H NMR 200 MHz spectra in CDCl_3 of (a) 3, (b) 0.07 M 3, 0.07 M AgFOD, and 0.07 M Yb(tfc)_3.

(16) The 1H 2D EXSY experiments using a Bruker AMX-500 instrument gave no observable cross-peaks (positive phase cross-peaks would be indicative of interconversion). The pulse sequence used is identical to that used for 1H 2D NOESY experiments, but negative cross-peaks due to atoms linked through space were not observed since the number of scans was insufficient. The 2D EXSY spectrum shows the slow degradation of the Ag(I) reagent over time by slight upfield “smearing” of the split signals. Nevertheless, no evidence of cross-peaks was observed under the experimental conditions. Mixing times of 0.4 and 0.8 s were used. A wide range of mixing times were not used in the 2DEXSY experiments (to probe a large range of exchange rates), although our observations were confirmed by NOEDIFF experiments which showed no sign of interconversion occurring.
ytterbium(III) association is currently under investigation, as is the precise stability of the (M) and (P) helices of complex 3. In conclusion, we have reported the use of silver(I)–chiral lanthanide shift reagents to analyze the helical distribution of dipyrromethene complexes. By using this strategy, integration of the resolved signals reveals the helical enantiomeric ratio of the sample, which will prove to be extremely useful in future work involving the analysis of helical enantiomeric excesses. This approach should be applicable to a wide range of helical compounds containing olefinic or aromatic moieties, thus circumventing the need for optically pure samples for comparative purposes.

Acknowledgment. This work was supported by the Natural Sciences and Engineering Council of Canada. The authors thank Dr. Nick Burlinson for assistance with the 2D NMR spectra.