Contents

1 History of Vitamin B₁₂: Pernicious Anemia to Crystalline Cyanocobalamin 1
 Karl Folkers
 1 100 to 155 Years Ago, 1
 2 56 to 100 Years Ago, 2
 3 53 Years Ago—The Nobel Prize, 2
 4 36 to 53 Years Ago, 3
 5 32 Years Ago—Discovery of Crystalline Vitamin B₁₂, 3
 References, 15

2 Nomenclature 17
 Waldo E. Cohn

3 X-Ray Crystallography of B₁₂ and Cobaloximes 23
 Jenny Pickworth Glusker
 1 Establishment of the Chemical Formula of Vitamin B₁₂ and Vitamin B₁₂ Coenzyme 24
 2 Details of the Structure of Vitamin B₁₂, the Coenzyme, and Their Analogues, 41
 3 Effects of Alterations in the Corrinoid System, 69
 4 Model Compounds to Give Information on Mechanism, 80
 5 Concluding Remarks, 90
 Notes Added in Proof, 91
 Appendix I Lists of Analyses Described, 92
 Appendix II Methods of X-Ray Crystallography and Glossary, 97
 References, 102

4 Biosynthesis of the Corrin Macrocycl 107
 Alan R. Battersby and Edward McDonald
 1 Introduction, 108
 2 Identity of the Primary Precursors of Cobyrinic Acid, 111
3 Mechanistic Study of the Methyl Transfer from Methionine, 113
4 Proof That Uro'gen-III Is a Precursor of Cobyrinic Acid, 116
5 Biosynthesis of Uro'gen-III from PBG, 117
6 Steps Beyond Uro'gen-III, 120
7 Structures of the Dimethylated Isobacteriochlorins Related to Vitamin B_{12}, 123
8 Structure of the Mono-C-Methylated Chlorin (Factor I), 130
9 Structures of the Trimethylated Isobacteriochlorins, 132
10 The Methyltransferase Enzyme System, 135
11 Synthesis of Isobacteriochlorins and Dihydroisobacteriochlorins, 135
12 Experiments on the Loss of C-20 from the Precursor Macrocycle During Formation of Cobyrinic Acid, 137
13 Summary of Pathway to Corrins and Future Prospects, 139

References, 141

Biosynthesis of Cobalamin Coenzymes 145

F. M. Huennekens, K. S. Vitols, K. Fujii and D. W. Jacobsen
1 Introduction, 146
2 Biosynthesis of the Nucleotide Loop of Cobalamins: Conversion of Cobyrnic Acid to Cobalamin, 148
3 Formation of the Carbon—Carbon Bond in Cobalamin Coenzymes: Conversion of Cobalamins to Adenosyl- and Methylcobalamin, 155
References, 164

The Total Synthesis of Vitamin B_{12} 169

Robert V. Stevens
1 Introduction, 169
2 Synthesis of Cyanobromide 1 (Harvard, 1968), 172
3 The Eastern Half (Cambridge and Zurich), 183
4 Coupling of the Eastern and Western Halves: Synthesis of Cobyrnic Acid (Cambridge and Zurich), 187
5 The Photochemical Path (Zurich), 192
6 Synthesis of Vitamin B_{12}, 197

Reactions of the Corrin Macrocycle 201

Raymond Bonnett
1 Introduction, 202
2 The Corrin Ligand-Basic Structural Considerations, 203
3 Metallation and Demetallation, 210
4 Meso Substitution, 212
5 Oxidative Cleavage, 217
6 Epimerization at 0-Positions, 220
7 Cyclization Reactions, 225
8 Reactions of Peripheral Acylamide Functions, 230
9 Miscellaneous
Reactions, 237
References, 240
7 Synthesis of Organocobalt Complexes 245

Kenneth L. Brown

1 Introduction and Scope of This Chapter, 246
2 Practical Aspects, 247
3 Organocobalt Syntheses via Cobalt(I) Reagents, 250
4 Organocobalt Syntheses via Cobalt(II) Reagents, 271
5 Organocobalt Syntheses via Cobalt(III) Reagents, 277
6 Modification of Organic Ligands, 283 References, 286

9 Reactions of Alkyl Ligands Coordinated to Cobalamins and Cobaloximes 29

H. P. C. Hogenkamp

1 Introduction, 295
2 Homolytic Cleavage of the Carbon—Cobalt Bond, 296
3 Heterolytic Cleavage of the Carbon—Cobalt Bond, 305 References, 319

10 Coordination Chemistry of the B12 Dependent Isomerase Reactions 32

J. M. Pratt

1 Introduction, 326
2 Why Co? 335
3 Steric Effects on the Structures and Equilibria of DBC and Alkylcobalamins, 341
4 Labilization of the Co—C Bond by Steric Distortion, 361
5 Reactions Related to the Enzymatic Isomerase Reactions, 375
6 Summary, 386
References, 388
Electronic Spectra of B12 and Related Systems 393

C. Giannotti

1. General Aspects in the Electronic Transition of Corrinoid Co₁₁₁ Compounds, 394
2. Theoretical Considerations, 396
3. Nature of the Electronic Transitions, 401
4. Effect of Various Parameters on the Position of the Absorption Bands, 407
5. Electronic Absorption Spectra of B₁₂ and B_{12x}, 418
6. Cobaloximes as Models, 419
7. Circular Dichroism (CD); Magnetic Circular Dichroism (MCD), 420
8. Luminescence, 426
Referenes, 427

EPR of B12-Dependent Enzyme Reactions and Related Systems

John R. Pilbrow

1. Introduction, 432
2. EPR of Cobalamins and Cobinamides, 433
3. B₁₂-Dependent Enzyme Reactions, 444
4. Oxygenation of B₁₂(Cbl⁺), 458
5. Conclusion, 459
References, 460

The Nuclear Magnetic Resonance Spectroscopy of Cobalamins and Their Derivatives 463

Otto D. Hensens, H. Allen O. Hill, Charlotte E. McClelland, and Robert J. P. Williams

1. Introduction, 464
2. The ¹H NMR Spectrum of Adenosylcobalamin, 465
3. ¹³C NMR Assignments of Vitamin B₁₂ Derivatives, 473
4. Structural Information Revealed by NMR Spectroscopy, 482
5. Biosynthetic Studies, 486
6. The ¹H NMR Spectra of Co (II) and Co (I) Corrinoids, 486
7. The Electronic Structure of Corrinoids, 487
8. The Cobalamins as Fluxional Molecules, 490
9. The pH Dependence of the ¹H NMR Spectra of Cobalamins, 493
10. The Reaction of Cobalamins with Metal Ions, 495
11. Conclusions, 498
References, 498
Chemistry and Significance of Vitamin B\textsubscript{12} Model Systems 501

Jack Halpern
1 Introduction, 502
2 Some General Comparisons of B\textsubscript{12} and Model Compounds, 504
3 Structural and Steric Aspects, 505
4 Acidities of Hydridocobalt Complexes and Cobalt—Hydrogen Bond Dissociation Energies, 506
5 Cobalt—Carbon Bond Dissociation Energies, 507
6 Redox Chemistry of B\textsubscript{12} Model Compounds, 513
7 Formation of Cobalt—Carbon Bonds, 517
8 Cleavage of Cobalt—Carbon Bonds, 524
9 Role of Model Systems in the Study of the Mechanisms of B\textsubscript{12}-Dependent Enzymatic Reactions, 528
10 Concluding Remarks, 535
References, 535

Mechanisms of Action of the B\textsubscript{12} Coenzyme: Theory and Models 543

Bernard T. Golding
1 Introduction, 544
2 Cleavage of the Co—C Bond of AdoCbl, 544
3 Hydrogen Abstraction, 554
4 Migration of Group X, 555
5 Modeling AdoCbl-Dependent Reactions, 564
6 Conclusions, 577
References, 578

CONTENTS OF VOLUME 2

1 Biological and Medical Aspects of Vitamin B\textsubscript{12}
 William S. Beck

2 Cobalamin Transport in Microorganisms
 Clive Bradbeer

3 Intrinsic Factor, Transcobalamin, and Haptocorrin
 Ebba Nexå and Henrik Olesen
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Quantitation of Cobalamins in Human Serum</td>
<td>Ebba Nexø, Henrik Olesen</td>
</tr>
<tr>
<td>5</td>
<td>Metal-Free Corrinoids and Metal Insertion</td>
<td>Volker B. Koppenhagen</td>
</tr>
<tr>
<td>6</td>
<td>Mechanisms for B_{12}-Dependent Methyl Transfer</td>
<td>J. M. Wood</td>
</tr>
<tr>
<td>7</td>
<td>Acetate Biosynthesis</td>
<td>Lars G. Ljungdahl and Harland G. Wood</td>
</tr>
<tr>
<td>8</td>
<td>Amino Mutases</td>
<td>John J. Baker and Thressa C. Stadtman</td>
</tr>
<tr>
<td>9</td>
<td>Diol Dehydrase</td>
<td>Tetsuo Toraya and Saburo Fukui</td>
</tr>
<tr>
<td>10</td>
<td>Ethanalaminc Ammonia-Lyase</td>
<td>Bernard M. Babior</td>
</tr>
<tr>
<td>11</td>
<td>Glutamate Mutase</td>
<td>Robert L. Switzer</td>
</tr>
<tr>
<td>12</td>
<td>B_{12}-Dependent Methionine Biosynthesis</td>
<td>Robert T. Taylor</td>
</tr>
<tr>
<td>13</td>
<td>Methyimalonyl-CoA Mutase</td>
<td>Jdnos Retey</td>
</tr>
<tr>
<td>14</td>
<td>Cobalamin-Dependent Ribonucleotide Reductases</td>
<td>Raymond L. Blakley</td>
</tr>
</tbody>
</table>
Preface for Volume 1

Volume 1 contains chapters on the history, nomenclature, and structure determinations of B₁₂ and related systems. The biosynthesis of the corrin macrocycle and coenzyme B₁₂ are covered, along with the total chemical synthesis of the vitamin. Reactions of both the corrin ring and the cobalt-carbon bond are discussed and related to the mechanism of action of coenzyme B₁₂. In addition, chapters on various aspects of spectroscopy including electronic, EPR, and NMR are included.

The final result is an up-to-date and critical review of the areas described above. This treatise provides, for the first time, a complete and comprehensive review of all of the major chemical, biochemical, and medical aspects of vitamin B₁₂.

I wish to take this opportunity to thank the contributors to this volume for both the scholarship of their work and the promptness with which they all met the various deadlines.

DAVID DOLPHIN

Vancouver, British Columbia
November 1981
General Preface

The vitamin B\textsubscript{12}, coenzyme and related corrinoids represent the most complex non-polymeric structures found in nature, and in addition they are the only known naturally occurring organometallic complexes. Their uniqueness and complexity have presented major challenges, and will continue so to do for some time to come, in all areas of the natural and life sciences. Indeed, solutions to B\textsubscript{12}-related problems present some of the principal scientific achievements of the past half century; each decade has recorded a milestone toward an understanding of the nature and function of these systems.

In 1926 Minot and Murphy announced a dietary treatment of pernicious anemia, which had previously proved to be a fatal disease. In 1934 they were awarded the Nobel Prize for their discoveries concerning liver therapy against anemias. In 1948 Folkers’s group in the United States and Lester Smith’s in Great Britain independently announced the isolation and crystallization of the red antiperinicious anemia factor now known as vitamin B\textsubscript{12}. The structure of vitamin B\textsubscript{12} was revealed in 1956 by the X-ray crystallographic work of Hodgkin’s group and by the chemical studies of Todd and Johnson. In 1958 Barker isolated and characterized coenzyme B\textsubscript{12}, showing that vitamin B\textsubscript{12} (cyanocobalamin) is an antifactor generated during its isolation. The structure of the coenzyme with its unique cobalt-carbon bond was elucidated once more by Hodgkin in 1961. The 1960s saw major advances in our understanding of both the chemistry and enzymology of B\textsubscript{12}, and its coenzyme, culminating in the total synthesis of vitamin B\textsubscript{12} by Woodward and Eschenmoser in 1976.

Since there are fewer molecules of B\textsubscript{12} in a man than there are red blood cells, it is not surprising that there is still much to learn about this molecule. This is especially true in mammals where the function of B\textsubscript{12} in such low concentrations is still unclear. Furthermore, although there are many enzymatic reactions dependent on coenzyme B\textsubscript{12}, its mechanism of action is still obscure.

This work consists of two volumes and covers all of the major aspects of the chemistry, biochemistry, and medicine relating to B\textsubscript{12}. Volume 1 emphasizes chemistry, biosynthesis, history, and nomenclature; Volume 2 covers biochemical and medical aspects.

I wish to thank Dr. Olga Avramovic for her assistance, Alan Johnson for introducing me to B\textsubscript{12}, and the late R. B. Woodward for expanding and encouraging my knowledge and interest in the subject.

DAVID DOLPHIN

Vancouver, British Columbia
November 1981
Author Index

Numbers in boldface are pages on which names/references appear in text. Numbers in parentheses are reference numbers and indicate that the author's work is referred to although his name may not be mentioned in the text. Numbers in italics indicate pages on which complete references are listed.

Aabeles, R. H., 65(56), 68(57), 104, 109 (1), 142, 147(11), 156(52), 160(52), 164, 166, 262(183), 283(189), 284 (188), 239, 310(64), 322, 376(93), 377(95), 382(121, 122), 391, 392, 449(27, 30), 450(41), 451(36, 37, 41), 453(41), 454(41), 461, 469(14), 499, 507(31), 527(118,119), 536(31), 536, 539, 540, 545(5, 27), 547(6, 16), 548(11, 16), 550(11, 16), 551(17), 558 (47), 559(47), 578, 579, 580
Abelos, P., 60(2), 61, 62
Abelos, B., 60(2), 61, 62
Abelos, A., 60(2), 61, 62
Abelos, J., 60(2), 61, 62
Abelos, N., 60(2), 61, 62
Abelos, R., 60(2), 61, 62
Abelos, S., 60(2), 61, 62
Abelos, T., 60(2), 61, 62
Abelos, V., 60(2), 61, 62
Abelos, W., 60(2), 61, 62
Abelos, X., 60(2), 61, 62
Abelos, Y., 60(2), 61, 62
Abelos, Z., 60(2), 61, 62
Abelos, A. B., 60(2), 61, 62
Abelos, A. C., 60(2), 61, 62
Abelos, A. D., 60(2), 61, 62
Abelos, A. E., 60(2), 61, 62
Abelos, A. F., 60(2), 61, 62
Abelos, A. G., 60(2), 61, 62
Abelos, A. H., 60(2), 61, 62
Abelos, A. I., 60(2), 61, 62
Abelos, A. J., 60(2), 61, 62
Abelos, A. K., 60(2), 61, 62
Abelos, A. L., 60(2), 61, 62
Abelos, A. M., 60(2), 61, 62
Abelos, A. N., 60(2), 61, 62
Abelos, A. O., 60(2), 61, 62
Abelos, A. P., 60(2), 61, 62
Abelos, A. Q., 60(2), 61, 62
Abelos, A. R., 60(2), 61, 62
Abelos, A. S., 60(2), 61, 62
Abelos, A. T., 60(2), 61, 62
Abelos, A. U., 60(2), 61, 62
Abelos, A. V., 60(2), 61, 62
Abelos, A. W., 60(2), 61, 62
Abelos, A. X., 60(2), 61, 62
Abelos, A. Y., 60(2), 61, 62
Abelos, A. Z., 60(2), 61, 62
Essenberg, M. R., 377(95), 391
Evans, H., 33(39), 103, 208(24), 224 (24), 241, 345(60), 390
Eagerness, P. E., 118(4), 143
Fanchiang, Y. T., 517(76), 538
Fantes, K. H., 25(7), 102
Farmery, K., 250(34), 289
Farooq, S., 212(33), 241
Farragi, M., 318(95), 323
Fee, J. A., 382(122), 392, 450(41), 451 (36, 41), 453(41), 454(41), 462, 558 (47), 559(47), 580
Feller, B. A., 40(46), 104
Felner, I., 247(39)
Fendler, J. H., 409(62), 429
Fenton, W. A., 156(55), 157(56), 166
Ferraudi, G. J., 300(23), 320, 336(23), 363(23), 373(23), 389, 404 (41), 405(41), 418(41), 428, 511(46), 525(46), 537, 553(25), 579
Finkbeiner, H. L., 404(23), 427
Finke, R. G., 547(150)
Finlay, T. H., 68(57), 104, 461(29), 545(5), 578
Firth, R. A., 255(81), 289, 336(27), 343(52), 346(52), 347(52), 348(52), 349(52), 350(52), 351(52), 354(52), 362(52), 363(52), 369, 390, 394(1), 395(1), 397(8), 404(28), 405(1), 408(8), 409(8), 412(67), 420(1), 422(1), 427, 429, 468(10), 482(29), 484(29), 487(29), 488(29), 490(29), 491(29), 499
Fischli, A., 75(75), 204(14), 207(14), 212 (36), 220(36), 240, 241(39), 345(61), 390, 427
Fleer, H., 87(99), 88(99), 705, 268(139), 270(141), 142, 297, 377(101), 379 (104, 106), 392, 533(146), 147, 148, 549, 566(54), 565(7), 580
Florian, L. R., 85(90), 105
Floriani, C., 254(64), 289, 335(20), 389
Folkes, K., 25(5), 268(102), 110(60), 747, 2 18(53), 2 39(104), 2 47, 243
Fontaine, C., 404(36), 405(36), 406 (36), 418(36), 419(36), 428, 512 (53, 54, 55), 525(53, 54, 55), 537
Fookes, C. I. R., 117(28, 32, 33), 118 (28, 33, 35, 3 6, 37), 127(26a), 742, 143
Ford, S. H., 110(44), 747, 150(17), 151(17), 764
Forster, L. S., 406(53), 429
Foster, M. A., 451(38), 452(38), 462, 558 (48), 580
Foster, T., 573(79), 581
Fox, J. P., 389(11), 427
Francia, M. D., 312(70), 322, 539
Frey, P. A., 377(95), 391, 449(30), 461, 545, 578
Frick, T., 312(70), 322, 539
Friedlina, R. G., 556(42), 580
Friedman, S., 147(5), 164, 529(124, 125), 540
Friedmann, H. C., 110(4), 747, 148(12, 13), 150(17), 151(13, 17), 153(31, 32, 33), 154(16, 37, 39), 159(40), 157(58), 764, 765, 766
Friedrich, W., 92(127), 106, 110(2), 120 (2), 747, 152(24), 161(71), 765, 766, 221(63), 231(85), 234(94, 95), 242, 243, 249(27), 267(136), 257, 290, 301(26, 27), 320, 413(72, 73, 74, 75, 76), 415 (72), 420(72, 73), 421(72, 73), 429
Fritz, H. L., 260(100), 290, 539
Fuenes, R., 208(126), 297, 482(24), 487(24), 488(24), 489(24), 493(24), 497(24), 499
Fugate, R. D., 422(101), 426(101), 430
Fujii, K., 162(75, 76, 77), 163(82), 766, 767
Fujii, Y., 295(181)
Fukui, S., 253(57), 288, 301(25), 302 (30), 306(51), 311(65), 320, 321, 322, 508(38), 522(84), 524(38), 525(38), 536, 538
Funabiki, T., 569(67), 581
Fung, M. M., 397(9), 427
Fyfe, J. A., 153(33), 765
Gakenheimer, W. C., 40(46), 104
Gale, J. A. D., 125(50), 143, 204(133), 240
Galvan, J. H., 162(76), 766
Gams, R. A., 156(54), 766
Garbers, C. F., 247(49)
Gardiner, D. J., 344(55), 390, 398(10), 427
Garstki, C., 765(34)
Gastaldo, C., 33(33), 703
Garfod, C., 266(108), 267(108), 290
Gaudemer, A., 251(39), 253(53), 256 (53.74, 92, 93), 257(53, 92, 93), 260 (92), 261(92, 93), 263(53, 92, 93), 264 (74), 265(53, 93), 279(179), 288, 289, 290, 292, 300(18), 304(42), 320(31), 364(83), 391, 404(37), 405(37), 418 (37), 428, 511(49), 512(53), 54, 55, 56, 525(53, 54, 55, 56), 524(90), 537, 538
Gauss, P. L., 249(24, 25), 254(24), 268 (132, 133), 278, 291
George, F., 412(66), 429
Georgopoulos, N., 117(26), 120(26), 142

Ghamber, R. K., 449(34), 461
Giannotti, C, 404(36, 38, 39), 406(36), 418 (36, 38, 39, 42), 419(36, 39, 42), 428, 512(53), 541, 523(53, 54, 94, 95), 537, 538, 539, 533(23), 579
Gibson, J. F., 467(14)
Gilbert, B.C., 573(75), 557
Gilks, R.D., 33(33), 103
Gluck, J. P., 28(23), 47(51), 103,104, 700(121), 504(12), 536
Glueck, K. D., 123(48), 125(48), 129(57), 132(48, 57), 133(62), 134(48, 57, 62), 135(57), 136(62), 137, 138(57, 62), 143, 144
Godfrey, J. M., 33(39), 103, 289(24), 221(62), 224(24), 234(62, 65), 235 (62), 236(65), 247, 242, 345(60), 390, 485(33), 499
Goodkin, V. L., 275(159), 292, 335(21), 389
Goh, L. Y., 515(65), 537
Gold, B. T., 112(4), 113(14), 114(146), 742, 218(56), 242, 268(125), 281(116), 117, 282(192, 193), 284(192, 198), 297, 292, 293, 303(39), 316(39), 527(52), 452(24), 481, 482(24), 499, 504(57), 507(32), 508(32, 39), 525(39, 528(32), 529(32), 530(32), 532(136, 137, 138), 534(136, 149), 556, 557, 549, 549 (57(14), 547, 553(24), 556(36), 557(36), 558(36), 559(36), 560(64, 65, 66), 569(64, 65, 66), 570(65), 571(69), 73, 572(70), 573(36), 575(73, 75, 84), 578, 579, 580, 581
Gossamer, A., 37(43, 45), 39(43), 103, 137 (68), 744, 216(47), 219(59), 228(47), 229(74, 76), 236(98), 247, 242, 245, 485(31), 499
Gould, D. C, 449(28), 451(28), 467
Graf, F., 441(25), 442(25), 467
Grant, D. M., 130(58), 744, 477(20), 480 (23), 481(23), 488(23), 492(20), 499
Grant, M. E., 268(126), 297, 306(56), 522, 482(24), 487(24), 488(24), 489 (24), 493(24), 497(24), 499
Gratex, M., 573(76), 581
Greaves, M. L., 35(40), 103, 342(45), 389
Green, M. L. H., 335, 17, 340(17), 389, 452(49), 462, 539(132), 545, 547(8), 559(87), 576(8), 578
Griffith, J. S., 438(13), 467
Griffith, W. P., 276(160), 292
Grigg, R., 77(70), 105, 203(66), 240, 243, 246(3), 252(5), 266(3), 277(3), 286, 302 (32), 527, 335(19), 340(37), 389
Gross, G., 236(95), 245
Gruning, B., 37(43, 45), 39(43), 104, 229 (74, 76, 77), 236(98), 242, 245, 485(31), 499
Guschendorf, H., 236(96), 245
Guest, J. R., 147(5), 764, 529(12,4,125,540
Guesenbauer, H., 236(96), 245
Gussev, A. S., 260(110), 290, 305(50), 306(50), 527
Gustafson-Petter, K. E., 118(35, 36), 745
Gutschow, C., 115(21), 742
Halpern, J., 253(54), 255(80), 264(105), 273(152), 153, 154, 155, 156, 157, 158, 275(156), 157, 278(80), 288, 289, 290, 292, 335(16), 377(97), 385(97), 389, 391, 412, 502(11), 504(11), 506(23), 507 (29), 508(42), 510(42, 45), 511(42, 47), 482, 512(51, 52, 513(59), 514(23), 515 (65, 70), 516(70, 73), 517(69, 75), 518 (22, 47, 48), 519(22, 48), 520(59), 522 (59), 520(1, 107), 527(107), 529(1), 530 (42), 531(11), 555(1, 11, 22, 42, 48, 59, 70), 556, 557, 115, 519
Abbreviations, nomenclature, 20
Absolute configuration:
3-episirohydrochlorin, 130
vitamin B₁₂, 28
Acetaldehyde:
[2-^{2H},^{3H}]acetaldehyde
from ethanolamine, 558
ethylene glycol, vitamin B₁₂ coenzyme
photolysis, 298
2-ethoxyethylamine, vitamin B₁₂ coenzyme
photolysis, 208, 328
Acetamide side chain, vitamin B₁₂, 30
Acetic acid, carbon dioxide reduction,
528
Acetonitrile formation, methylcobaloxime
and cyanide, 307
2-Acetoxyalkyl(cobaloxime) conversion to:
2-alkoxyalkylcobaloximes, 575
dieffen =complexes, 575
Acetoin, vitamin B₁₂ total synthesis,
172
Acetone:
bis(salicylaldehyde)ethylenediamine-
cober(III)(CH₃OH), alkylation,
518
cobalt(II) complexes, alkylation,
517
photolysis, [3-hydroxypropy]cobaloximes,
302
reaction with aquo-hydroxo Co(III),
336
Acetonitrile formation, methylcobaloxime
and cyanide, 307
2-Acetoxyalkyl(cobaloxime) conversion to:
2-alkoxyalkylcobaloximes, 575
dieffen =complexes, 575
preparation, 284
2-Acetoxyethyl(pyridine)cobaloxime,
¹³C-labelled, 534
Acetylcobalamin:
alkali, vitamin B₁₂, 311
reaction with hydroxylamine, 312
Acetylene:
addition to cobalt(I) complexes, 256
carbanion reaction with cobalt(III)
complexes, 279
pentacyanocobaltate, reaction with,
276
Acetylglutamate, reaction with
hydroxylamine, 312
Acetylhydrazine, 1
Acid catalysis:
alkylcorrinoids, decomposition, 369
2-hydroxyethylcobaloxime, dieffen
=complexes, 575
phenacylcobalamin, olefin n-complexes,
575
Acid catalyzed decomposition isopropyl-
cobalamin rate, 371
Acid catalyzed rearrangement to 0-hydroxy-
2-propylpyridinato-cobaloxime, 314
Acid deamination:
2-hydroxyethylcobaloximes, 518
Acid cleavage:
adenosylcobaloxime, 312
adenosylcorrinoids, 312
Coa-adenyl-Co₃adenosylcobalamin,
312
3-isoadenosylcobalamin, 312
Acid decomposition:
2,3,4,5-dihydroxy-4-pentenal, vitamin B₁₂
coenzyme, 312
cobalt-carbon bond, vitamin B₁₂
coenzyme, 366
Acid decomposition (Cont’d)

- ethoxycarbonyl (pyridine) cobaloxime, ethylene, 313
- ethylene, hydroyethylcobalamin, 313
- methoxyethylcobalamin, ethylene, 313

Acid hydrolysis:
- nucleotide loop, 234
- vitamin B$_{12}$ chromatography, 230
- cobyrinic acid, 230, 232, 234

Acidity:
- hydridocobalt complexes, 253, 506
- hydridopentacyanocobalt, 252
- Schiff-base complexes, 506
- vitamin B$_{12}$, 253

Acrylate radical, vitamin B$_{12}$ coenzyme, glutamine mutase, 571

Acrylonitrile:
- addition to cobalt(I) complexes, 256
- cleftin π-complexes, cobalt(II) complexes, 527

Activation, corrin ring, S-adenosylmethionine, 345
- methionine synthetase, 162

Activation enthalpy:
- homolytic cleavage, cobalt-carbon bond, 511
- kine bios, cobalt-carbon bond, 5 1 1
- 1-phenylethylcobaloximes, axial ligands, role, 5 1 1

Active site thiol, vitamin B$_{12}$, coenzyme, enzymic reaction, 555
- 1-Adamantyl(pyridine)cobaloxime, 256

Addition of chlorine, vitamin B$_{12}$, 216

Addition of guanosine diphosphate, cobinamide phosphates, 151
Addition of lower base, cobalamins, biosynthesis, 153
Addition to:
- cobalt(II) complexes:
 - acetylene, 256
 - acrylonitrile, 256
 - alkenes, 256
 - cleftins, 262
 - 3,3,3-trifluoropropyne, 257
- corrin, conjugated system, 238

olefins, mechanism:
- cobaloximes, 264
- cobalt(II) complexes, 265
- hydridocobalt complexes, 265
- hydridopentacyanocobalt, 263

unsaturated electrophiles, cobalt(II) complexes, 266

Adenosine-5′-carboxaldehyde, 363

formation, 297
structure, 297

Adenosine triphosphate, vitamin B$_{12}$ coenzyme, biosynthesis, vitamin B$_{12}$, 523

Adenosylating enzyme:
- metal ions, 161
- nucleoside triphosphates, 160

Adenosylation:
- C. tetanomorphum, table, nucleoside triphosphates, 160
- corrin, 155
- Adenosyl carbene, vitamin B$_{12}$, coenzyme, 549

Adenosylcobalamin, see Vitamin B$_{12}$ coenzyme

Adenosylcobalamin-agarose, affinity chromatography, 268
- ara-Adenosylcobalamin, reaction with cyanide, 306
- L-Adenosylcobalamin, reaction with cyanide, 306

Adenosylcobalt: acid cleavage, 312
- reaction with alkali, 307
- Adenosylcobinamide, 155
- Adenosylcobyrinic acid, 155
- Adenosylcobyrinoids, acid cleavage, 312
- S-Adenosyl homocysteine, 363
- S-Adenosylmethionine: activation, corrin ring, 345
- methionine formation, 329
- Carb-adenyl-CoB$_{12}$adenosylocobalamin, reaction with cyanide, 305
- Adenosylcobamide, coordination chemistry, 351

AdoCbl, see Vitamin B$_{12}$ coenzyme

Adocobalamin, see Vitamin B$_{12}$ coenzyme

Aerobaetcr acrogenes, cobalamin biosynthesis, 160

Affinity chromatography:
- adenosylcobalamin-agarose, 268
Affinity chromatography (Cont’d)
corrin, 268
ribonucleotide reductase, 268
Aggrega ion, cobalamin, 491
Air-dried crystals, vitamin B₁₂, 25
Alkalai:
adenosylcobaloxime, 307
reaction with alkylcobalt complexes, 307-311
vitamin B₁₂, cobalt, reduction by, 256
vitamin B₁₂, acetylcoabalin, 311
Alkaline decomposition:
cobalt-carbon bond, vitamin B₁₂, 366
cobalamin phosphate, dephosphorylation, E. coli, 155
2-Alkoxyalkylcobaloximes, 2-acetoxyalkylcobaloximes, conversion to, 575
Alkylation agents, cobalt complexes, 254
Alkylation:
acetonitrile, bis(salicylaldehyde-ethylene-dimine)cobalt(III)(CH₃OH), 518
cobalt(III) complexes, 517
alkyl halides:
cobalt(I)oximes, 523
cobalt(I) complexes, 523
cobalt(II) complexes, 518
triphenylphosphinecobalt(II)oximes, 519
vitamin B₁₂, 520
vitamin B₁₂, 523
alkyl iodides versus other alkyl halides, cobalt(II) complexes, 522
alkylcobaloximes, mercury(II), 526
alkylcobalt complexes:
arsenic(III), 526
mercury(II), 526
thallium(III), 526
axial ligand effects, cobalt(I)oximes, 519
cobalt(I) complexes, stereochemistry, vinyl halides, 260, 502
cobalt(II) complexes, cobalt-carbon bond formation, 517-524
corrin, 214
CoTPP, disproportionation, 279
diazalkanes:
cobalt(II) complexes, 281
cobalt porphyrins, 281
electron transfer, cobalt(II) complexes, 259
gold(I), alkylcobalt complexes, 527
Grignard reagent, cobalt(II) complexes, 277,517
hydrazines and oxygen:
cobaloximes, 275
cobalt complexes, 275
kinetids, table:
cobaloximes, 259
cobalt(II) complexes, 258
mercury(II), 259
mercury(II), methylcobalamin, 526
methylpentacyanocobaltate(III), mercuric chloride, 526
nitromethane, cobalt, 280
olefin addition:
cobalt(I)oximes, 523
cobalt(II) complexes, 523
organolithium reagents, cobalt(II) complexes, 517
palladium(II), alkylcobalt complexes, 527
pentacyanocobaltate, 502
platinum(IV), alkylcobalt complexes, 527
radical intermediates:
bis(salicylaldehyde-ethylene-dimine)cobalt(II), 518
cobalt(II) complexes, 517
vitamin B₁₂, 520
vitamin B₁₂, 523
alkyl iodides versus other alkyl halides, cobalt(II) complexes, 522
alkylcobaloximes, mercury(II), 526
alkylcobalt complexes:
arsenic(III), 526
mercury(II), 526
thallium(III), 526
axial ligand effects, cobalt(I)oximes, 519
cobalt(I) complexes, stereochemistry, vinyl halides, 260, 502
cobalt(II) complexes, cobalt-carbon bond formation, 517-524
corrin, 214
CoTPP, disproportionation, 279
Alkylcobalamins:
- acid catalyzed electrophilic decomposition, 527
- alkyl reactions, 295-323
- base-on, off, photolability, 303
- bond dissociation energy, 513
- cobalt-carbon bond thermolysis, 525
- conformations, 341
- 5- and 6-coordinate, 346, 351
- dealkylation by thios, 527
- cis-diaminoplatinum(II) coordination, 495
- five coordinate, decomposition, 369
- heterolytic cleavage, 305-319
- N-carboxylic acid, 527
- pK values, benzimidazole, table, 351, 494
- protonation, table, 351
- quantum yield, photolysis, 303
- reaction with:
 - acid, 313
 - cyanide, 306
-
 - steric effects:
 - ligand exchange, 341
 - on structure, 341
 - thermolysis, 303
 - thios, 527
 - very strained, rate of decomposition, 371
 - vitamin B_{12}, reductive cleavage, 317
see also Alkylcobalt complexes; Cobalt complexes; Cobalt-carbon bond; Vitamin B_{12} coenzyme
Alkylcobaloximes:
- alkyl ligand reactions, 295-323
- axial ligand exchange rates, 248
- cation radicals, epr, 515
- chromatography, 247
- cobalt-carbon bond length, 359
- crystallization, 248
- dealkylation, thios, 527
- electrochemical oxidation, 515
- electronic spectrum, 406
- \beta-elimination, 364

Alkylcobalt complexes:
- halogen cleavage, 317
- heterolytic cleavage, 305-319
- hexachloroiridate, oxidation, table, 516
- mercury(II), alkylation, 526
- oxidation, one electron, 515
- photolysis:
 - epr spectroscopy, 525
 - quantum yield, 303
 - redox chemistry, 515
- redox potential, 516
- thermolysis, 303, 364
- X-ray crystallographic data, 80
- X-ray structure, 359
see also Alkylcobalt complexes (Alkylcobalt), nucleophilic displacement, X from, 516
Alkylcobalt complexes:
- alkylation:
 - gold(III), 527
 - palladium(II), 527
 - platinum(IV), 527
 - tin(IV), 527
- alkyl reactions, 295-323
- arsenic(III), alkylation, 526
- bond dissociation energy, Schiff-base complexes, 512
- cobalt-carbon bond:
 - length, table, 505
 - thermolysis, 525
- flash photolysis, 525
- formal oxidation state, 514
- halogen cleavage, 317
- Me hcyocobam; Vitamin B_{12} coenzyme, 551
- see also Alkylcobalt complexes; Cobalt complexes; Cobalt-carbon bond; Vitamin B_{12} coenzyme
- photolability, 553
- photolysis:
 - anaerobic, 553
 - bis(acetylamino)ethyleneiminecobalt, 524
- bis(salicylaldehyde) ethylenedinitrimecobalt complexes, 524
- 1,4,8,11-tetraazacycletetradecane, 524
Alkylcobalt complexes (Cont’d)
- quantum yield, 553
- radical traps, 524, 552
- reaction with tetracyanoethylene, 285
- redox chemistry, diacetylmonoximino
diacetylmonoximatoiminopropane-
- 1,3-cobalt, 514
- thallium(III) alklylation, 526
- 1,4,8,11-tetraazacyclotetradecane, 524
- thermolysis, 552
- transalkylation, cobalt(II) complexes, 527
- see also Cobalt-carbon bond
- Alkylcobalt(IV) complexes, Schiff-base complexes, 516
- Alkylcobinamides:
 - electronic spectrum, temperature varia-
tion, 348
 - pH decomposition rates, 370
- Alkylcorins:
 - cobinamides cobalamins, 369
 - decomposition, acid catalysis, 369
 - imidazole coordination, 358
 - olefins decomposition, 365
 - photoaquation, 301
- Alkyl radicals, cobalt, recombination with, 335
- Alkyl reactions:
 - alkylcobalamins, 295-323
 - alkylcobalt complexes, 295-323
 - Alkynes:
 - addition: cobalt(II) complexes, 256
 - mechanism, 263
 - Alkynylcobalt complexes, synthesis, 279
- Amide activation, vitamin B₁₂, total synthe-
sis, 192
- f-Amine cleavage, group participation
effects, 231
- Amide dimerization, vitamin B₁₂ hydrolysis,
side chain, 33
- Amide hydrolysis, dinitrogen tetroxide.
 - VitaminB₁₂ total synthesis, 192
 - Amide side chain, nomenclature, vitamin
 B₁₂, 19.30
- Aminocacobalamin, vitamin spectrum, 411
- Aminoalcohols (vicinal), radical rearrange-
ments to aldehydes, 573
- Aminocobalamins, radical chemistry, 236
- vitamin B₁₂, alkylation 520
- reaction with 274
- vitamin B₁₂, alkylation, 523
- Alkyl iodides, cobalt(II) complexes, alkyla-
tion, 522
- Alkyl ligands:
 - cobaloximes, optically active, 268
 - effect on physical properties, table, 356
 - electronic spectrum, effect, 356
 - pH values, effect, 356
 - reactions, 295-323
- Alkylperoxocobalt complexes, 553
- Alkyl(pyridine)cobaloximes, cation ex-
change resin, hydrolysis, 249
- Alkyl radicals, cobalt, recombination with,
335
- Alkyl reactions:
 - alkylcobalamins, 295-323
 - alkylcobalt complexes, 295-323
- Alkyl halides:
 - bis(1,2-cyclopentanedioximato)cobalt,
cobalt(II) complexes, reaction with,
 274
 - bis(salicylaldehyde-o-phenylenedimine-
cobalt(II) Co, cobalt(II) complexes,
reaction with, 274
 - cobalt(II) complexes, alklyation, 523
- cobalt(II) complexes, alklyation, 523
- cobalt(II) complexes:
 - alklyation, 518
 - halogen abstraction, 519
 - reaction with, 273
- reactivity towards, 521
- pentaacyanocobaltate:
 - deffins from 519
 - reaction with 274
- reactivity towards:
 - bis(salicylaldehyde-o-phenylenedimine-
cobalt(II) (py), 521
 - pentanoylcoocobaltate, 521
- triphenylphosphine cobalt(II)aloximes, 521
- vitamin B₁₂, 521
- 1,4,8,11-tetraazacyclotetradecane:
- cobalt(II), reaction with, 274
- tricyclohexylphosphinecobalt(II)oxime,
 alklyation, 519
- vitamin B₁₂
- alkylation 520
- reaction with 274
- vitamin B₁₂, alkylation, 523
- Alkyl iodides, cobalt(II) complexes, alkyla-
tion, 522
- Alkyl ligands:
 - cobaloximes, optically active, 268
 - effect on physical properties, table, 356
 - electronic spectrum, effect, 356
 - pH values, effect, 356
 - reactions, 295-323
- Alkylperoxocobalt complexes, 553
- Alkyl(pyridine)cobaloximes, cation ex-
change resin, hydrolysis, 249
- Alkyl radicals, cobalt, recombination with,
335
- Alkyl reactions:
 - alkylcobalamins, 295-323
 - alkylcobalt complexes, 295-323
- Alkyl halides:
 - bis(1,2-cyclopentanedioximato)cobalt,
cobalt(II) complexes, reaction with,
 274
 - bis(salicylaldehyde-o-phenylenedimine-
cobalt(II) Co, cobalt(II) complexes,
reaction with, 274
 - cobalt(II) complexes, alklyation, 523
- cobalt(II) complexes, alklyation, 523
- cobalt(II) complexes:
 - alklyation, 518
 - halogen abstraction, 519
 - reaction with, 273
- reactivity towards, 521
- pentaacyanocobaltate:
 - deffins from 519
 - reaction with 274
- reactivity towards:
 - bis(salicylaldehyde-o-phenylenedimine-
cobalt(II) (py), 521
 - pentanoylcoocobaltate, 521
- triphenylphosphine cobalt(II)aloximes, 521
- vitamin B₁₂, 521
- 1,4,8,11-tetraazacyclotetradecane:
- cobalt(II), reaction with, 274
- tricyclohexylphosphinecobalt(II)oxime,
 alklyation, 519
Apoenzyme, circular dichroism, binding of corrin, 423
Co-aquo-Co-aq3-adenosylocobamide, reaction with cyanide, 306
Aquocobalamin, circular dichroism, 420
electronic spectrum, 417
enzymic reduction, 157
ligand substitution, equilibrium constants, table, 337
nmr spectrum, praseodymium, 468, 474, 483
pulse radiolysis, 318
reaction with:
malononitrile, 279
phenylnaconitrile, 279
redox potential 5 14
see also Cobalt complexes; Hydroxo-
Aquocob(II) inamide:
epr spectrum, 448
Aquocyanocobinamide, electronic spectrum, 408, 413
Aquocyanocobyric acid:
bond length s, 206
structure, 205
Aquohydroxocobinamide, electronic spectrum, 413
Aristeromycocobalamin:
photolysis, 297
reaction with:
cyanide, 306
hydroxide, 307
Arndt-Fistert, vitamin B12 total synthesis, 194
Aromaticity:
corrin, 204
vitamin B12 204
Arsenic(IH) alkylation, alkylcobalt complexes, 526
Arylcobaloximes, 271
Aryl cobalt complexes, bis(acetyldiacetonc)
ethylendiminecobalt, 275
Aryl halides, vitamin B12, reaction with, 271
10-Aryloxycoberalamin, 217
Ascorbic acid:
role in formation, yellow corrinoids, 39
vitamin B12, reaction with, 229
yellow corrinoids, 229
Assay, vitamin B12 coenzyme, biosynthesis, vitamin B12, 159
Atrophic gastris, 1
Axial ligand effects, cob(H)aloximes, alkyla-
ion, 518
Axial ligand exchange rates, alkylcob-
axial ligands:
- cobalt-carbon bond, bond dissociation
- equilibria, 345
role, activation enthalpy, 1-phenylethyl-
- (pyridine)cobaloxime, bond dis-
- association energy, 510
stereic requirements, corrin, 255
vitamin B12 coenzyme constraint of, 41
5- and 6-coordinate corrin, 346
Axial phosphincs bond lengths, cobaloximcs,
83
Azidocobalamin, electronic spectrum, 411,
Azidocob(II)inamide, epr spectrum simula-
bond dissociation energy, 510
steric requirements, corrin, 255
vitamin B12 coenzyme constraint of, 41
5- and 6-coordinate corrin, 346
Axial phosphincs bond lengths, cobaloximcs,
83
Azidocobalamin, electronic spectrum, 411,
Azidocob(II)inamide, epr spectrum simula-
tion, 445
B12 coenzyme, see Vitamin B12 coenzyme
B12, see Vitamin B12
7-Band, electronic spectrum, effect of
axial ligands, 411, table
Base-on, off:
electronic spectrum, vitamin B12
coenzyme, 357
epr spectrum, vitamin B12, 299
isopropylcobalamin, thermolysis, 552
photostability, alkylcobalamin, 303
vitamin B12 coenzyme, 350
Beckmann rearrangement, vitamin B12
rewrite, total synthesis, 180
Benzenemide:
alkylcobalamins, pK values, 351
effect on corrin ring folding, 59
pKa values when coordinated, 54
vitamin B12 coenzyme pK values, 351
4-V-Benzoyladeninosylcobalamin, reaction with
cyanide, 306
Benzooyl f-1-phenyl) methanide(chloro-
cobaloxime, preparation, 276
Benzy1 bromide:
reaction with:
- vitamin B12, 5.1.3
vitamin B12, 51.3
Benzy1aquo cobaloximcs, redox potential, 516
Benzylcobalamin, stability, 255, 513
Benzylcobaloxime, halogen cleavage, 317
Benzylcobalt complexes, thermal stability, 513
Benzylcobalt(octaethylporphyrin), stability, 255
Bilanes:
aminomethyl:
corrin biosyn thesis, 117
deamination, 118
hydroxymethyl, corrin biosynthesis, 118
1-methyl, corrin biosynthesis, 121
Binding of corrin to apoenzyme, circular
dichroism, 423
Binding to apoenzyme, side chain modifica-
tion, 65
Binding to ribonucleotide reductase,
B12, 442
Biological activity:
- lactams (corrin ring), 225
neocorrinoids, 8-epicorrinoids, 225
neovitamin B12, 224
Biosynthesis:
addition of lower base, cobalamins,
153
Aerobaeter aerogenes, cobalamins, 160
[5-13CJ 5-aminolevulinic acid, vitamin
B12, 479
[R]-1-amino-2-propanol, nucleotide
loop, 149
Clostridium sterlilandii, cobalamins,
153
Clostridium thermoaceticum, methyl-
cobalamin, 161
cobalamins:
- from cobyric acid, 148
nucleotide loop, 148
- cobinamides, 151, 152
corrin, nucleotide loop, 107,144, 148
E. coli, methylcobalamin, 161
Euglena gracilis, corrin, 117
eukaroytes:
- cobalt-carbon bond, 155
vitamin B12 coenzyme, 156
Factor I, 131
FMNH2 :
cobalamins, 148
nucleotide loop, 148
- guanosine diphosphate, nucleotide loop, 152
- L. leichmannii, cobalamins, 160
Methanosarcina barkeri, methylcobalamin,
162
Biosynthesis (Cont'd)

$[^{13}C]CH_3-L$-methionine, vitamin B$_{12}$, 480
1-methylbilane, corrin, 121
methylocobalamin:
mammalian, 163
methane, 161-163, 528
NADPH:
me thionine, 162
methylocobalamin, 162
nicotinate mononucleotides, cobalamins, 153
nuclear spectroscopy, vitamin B$_{12}$, 479
origin of carbon atoms, cobyrinic acid, 112
5-phosphoribosyl-l-pyrophosphate, cobalamins, 153
$[^{8-13}C]$ porphobilinogen, vitamin B$_{12}$, 480
primary precursors, cobyrinic acid, 112
prokaryotes:
cobalt-carbon bond, 155
vitamin B$_{12}$ coenzyme, 156
Propionibacterium arabinosum, nucleotide loop, 152
Propionibacterium shermanii, corrin, 112
ribose-1-phosphate, cobalamins, 153
sirohydrochlorin, 123
Streptomyces griseus, methylcobalamin, 161
timing, cobalt-carbon bond formation, 155
trimethylated i sobacteriochlorins, 132
unphosphoryrigenin(III) as precursor of cobyrinic acid, 116
Vitamin B$_{12}$ coenzyme, 145-167
Vitamin B$_{12}$, 28, 107
vitamin B$_{12}$ adenosine triphosphate, vitamin B$_{12}$ coenzyme, 523
assay, vitamin B$_{12}$ coenzyme, 159
Bioisotopic studies, nmr spectroscopy, 486
Bis(acetylacetone)ethylenediamine, X-ray structure, complex with methylcobalamin, 349
Bis(acetylacetone)ethylenedimine-cobalt(III), structure, 503
Bis(acetylacetone)ethylendiminedcobalt: alkyl complexes, photolysis, 524
aryl cobalt complexes, 275
bis(salicylaldehyde)ethylendiminedcobalt, redox potential, 504

pK$_a$ values, 504

I-Bis[(p-chlorophenyl)-2,2,2-trichloro-ethyl]amine, reaction with cobalt(II)oxime, 266
Bis(2-cyclopentanedionoximato)cobalt:
cobalt(II) complexes, reaction with alkyl halides, 274
nucleophilicity, cobalt(II), 251
Bis(dimethylglyoximato)cobalt, see Cobaloximes
Bisacetylacetone, sirohydrochlorin, 122
Bis(salicylaldehyde)ethylendiminedcobalt(II)(methylimidazole):
halogen abstraction, electron transfer, 520
six coordinate, 519
Bis(salicylaldehyde)ethylendiminedcobalt(III):
alkyl complexes, photolysis, 524
methyl complex, photolysis, 301
model systems, vitamin B$_{12}$ coenzyme, 551
nucleophilicity, 523
propyl complex, photolysis, 302
reaction with carbanions, 279
redox potential, bis(acetylacetone)-ethylenediminecobalt, 504
structure, 552
vitamin B$_{12}$ coenzyme, model systems, 551
7,7'$(CH_3)_2$ bis(salicylaldehyde)ethylendiminedcobalt, pK$_a$ values, 504
Bis(salicylaldehyde-o-phenylendiminedimine)cobalt, pK$_a$ values, 504
Bis(salicylaldehyde-o-phenylendiminedimine)cobalt(II)(py): alkylolation, radical intermediates, 518
alkyl halides, reactivity towards, 521
Bis(salicylaldehyde-o-phenylendiminedimine)cobalt(III):
cobalt(III) complexes reaction with alkyl halides, 274
redox potential, 504
structure, 503
Bond angles, distances, corrin, tables, 45-53
Bond dissociation energy:
alkylcobalamins, 513
axial ligands:
cobalt-carbon bond, 531
role, 1-phenyl-ethyl(oximino)-cobaloxime, 510
cobalt-carbon bond, steric effects, 507, 512

Bond angles, distances, corrin, tables, 45-53
Bond dissociation energy:
alkylcobalamins, 513
axial ligands:
cobalt-carbon bond, 531
role, 1-phenyl-ethyl(oximino)-cobaloxime, 510
("Bis(salicylaldehyde)ethylendiminedcobalt")

Bond angles, distances, corrin, tables, 45-53
Bond dissociation energy:
alkylcobalamins, 513
axial ligands:
cobalt-carbon bond, 531
role, 1-phenyl-ethyl(oximino)-cobaloxime, 510
("Bis(salicylaldehyde)ethylendiminedcobalt")
Bond dissociation energy (Cont'd)
conformational changes, cobalt-carbon bond, 531
1-cyanoacetyl)acetyl)cobaloxime, cobalt-carbon bond, 511
equilibrium determination, 1-phenylethyl-(pyridine)cobaloxime, 508
hydridocobalamin, 507
hydridocobalt complexes, 506
hydriodic acid, 507
hydridopentacyanocobalt, 507
vinyl(pyridine)cobaloxime, 507
vinyl(triphenylphosphine)cobaloxime, cobalt-carbon bond, 505
NMR spectroscopy, methylcobalt complexes, 506
observed and calculated, corrin, 205, table, 206
vinyl(pyridine)(bis(salicylaldehyde)-
ethylenediamine)cobalt, cobalt-carbon bond, 505
vinyl(pyridine)cobaloxime, cobalt-carbon bond, 505
vitamin B_12 coenzyme, cobalt-carbon bond, 505
interaction of vitamin B_12 coenzyme, 505
Bond strength, vitamin B_12 coenzyme, 505
Borohydride cleavage, carboxymethylcobalamin, 303
Bridged cation:
diol dehydrase, enzymic reaction, 555
molecular orbitals, 557
theoretical studies, 557
Bridged cobaloximes, structure, 87, 269
Bridged dimers, cobaloximes, 268
Broken cell enzymes, corrin biosynthesis, 116
Bromination:
corrin, 215
vitamin B_12, 215
1-Bromoacetyl)acetyl)cobaloxime, cobalt-carbon bond, 505
corrin, table, 48, 49
15-cyano-2,2,7,7,12,12-heptamethyl-
corrin, 206
isopropyl(pyridine)cobaloxime, cobalt-carbon bond, 505
isopropyl(tricyclohexylphosphine)-
cobaloxime, cobalt-carbon bond, 506
isopropyl(triphenylphosphine)-
cobaloxime, cobalt-carbon bond, 505
methyl(aquo)cobaloxime, cobalt-carbon bond, 505
methyl(pyridine)(bis(acetylacetone)-
earthylenediamine)cobalt, cobalt-carbon bond, 505
methyl(pyridine)cobaloxime, cobalt-carbon bond, 505
methy(S-triphenylphosphine)cobaloxime, cobalt-carbon bond, 505
NMR spectroscopy, methylcobalt complexes, 506
observed and calculated, corrin, 205, table, 206
vinyl(pyridine)(bis(salicylaldehyde)-
ethylenediamine)cobalt, cobalt-carbon bond, 505
vinyl(pyridine)cobaloxime, cobalt-carbon bond, 505
vitamin B_12 coenzyme, cobalt-carbon bond, 505
interaction of vitamin B_12 coenzyme, 505
Bond strength, vitamin B_12 coenzyme, 505
Borohydride cleavage, carboxymethylcobalamin, 303
Bridged cation:
diol dehydrase, enzymic reaction, 555
molecular orbitals, 557
theoretical studies, 557
Bridged cobaloximes, structure, 87, 269
Bridged dimers, cobaloximes, 268
Broken cell enzymes, corrin biosynthesis, 116
Bromination:
corrin, 215
vitamin B_12, 215
1-Bromoacetyl)acetyl)cobaloxime, cobalt-carbon bond, 505
corrin, table, 48, 49
15-cyano-2,2,7,7,12,12-heptamethyl-
corrin, 206
isopropyl(pyridine)cobaloxime, cobalt-carbon bond, 505
isopropyl(tricyclohexylphosphine)-
cobaloxime, cobalt-carbon bond, 506
isopropyl(triphenylphosphine)-
cobaloxime, cobalt-carbon bond, 505
methyl(aquo)cobaloxime, cobalt-carbon bond, 505
methyl(pyridine)(bis(acetylacetone)-
earthylenediamine)cobalt, cobalt-carbon bond, 505
methyl(pyridine)cobaloxime, cobalt-carbon bond, 505
methy(S-triphenylphosphine)cobaloxime, cobalt-carbon bond, 505
NMR spectroscopy, methylcobalt complexes, 506
observed and calculated, corrin, 205, table, 206
vinyl(pyridine)(bis(salicylaldehyde)-
ethylenediamine)cobalt, cobalt-carbon bond, 505
vinyl(pyridine)cobaloxime, cobalt-carbon bond, 505
vitamin B_12 coenzyme, cobalt-carbon bond, 505
interaction of vitamin B_12 coenzyme, 505
Bond strength, vitamin B_12 coenzyme, 505
Borohydride cleavage, carboxymethylcobalamin, 303
Bridged cation:
diol dehydrase, enzymic reaction, 555
molecular orbitals, 557
theoretical studies, 557
Bridged cobaloximes, structure, 87, 269
Bridged dimers, cobaloximes, 268
Broken cell enzymes, corrin biosynthesis, 116
Bromination:
corrin, 215
vitamin B_12, 215
1-Bromoacetyl)acetyl)cobaloxime, cobalt-carbon bond, 505
corrin, table, 48, 49
15-cyano-2,2,7,7,12,12-heptamethyl-
corrin, 206
isopropyl(pyridine)cobaloxime, cobalt-carbon bond, 505
isopropyl(tricyclohexylphosphine)-
cobaloxime, cobalt-carbon bond, 506
isopropyl(triphenylphosphine)-
cobaloxime, cobalt-carbon bond, 505
methyl(aquo)cobaloxime, cobalt-carbon bond, 505
methyl(pyridine)(bis(acetylacetone)-
earthylenediamine)cobalt, cobalt-carbon bond, 505
methyl(pyridine)cobaloxime, cobalt-carbon bond, 505
\(^{13}\text{C}\): biosynthetic studies:
dicyanocobalamin, nmr spectrum, 112
vitamin B\(_{12}\), nmr spectrum, 112, 480
C-12, first step in corrin biosynthesis,
decarboxylation, 120
C-13 epimer, neovitamin B\(_{12}\), 33
C-lactone structure, vitamin B\(_{12}\), 227
C. tetanomorphum:
Factor I, isolation from, 130
nucleoside triphosphates, adenylation, 160
sirohydrochlorin, incorporation into, 123
Cadmium:
alkylation, trans-dimethyl(cobalt(III))
complexes, 527
incorporation into 15-cyano-1,2,7,7,12,12-heptamethylcorrin, 211
Calcium ions, vitamin B\(_{12}\) coenzyme, electronic spectrum, 398
(+)Camphor:
conversion to cis-isoketipinic acid, 174
ring C, vitamin B\(_{12}\) total synthesis, 184
vitamin B\(_{12}\), total synthesis, 174, 193
Camphorquinone:
vitamin B\(_{12}\) total synthesis, 183
Canonical resonance structures: corrin, 205
vitamin B\(_{12}\), 205
Clipped cobaloximes:
model systems, vitamin B\(_{12}\) coenzyme, 533,565
structure, 269, 533, 565
Carbamions intermediates, methylnicotinyl-CoA mutase, 556
Carbon dioxide, reducti

\(\text{Carbon-skeleton rearrangements:}
\text{epi spectroscopy, 381}
\text{mechanism, 385}
\text{protein-free models, 377}
\text{rearrangements, role of cobalt-carbon}
\text{intermediate, 382}
\text{Carboxy(cobaloxime, 309}
\text{Carboxyl(malonamide)cobalt(III))}
\text{complexes, photolysis, 272}
\text{Carboxylic acids:}
corrin oxidation, 218
preparation, vitamin B\(_{12}\), 231
Carboxymethylcellulose, corrin chromatography, 249
\text{Carboxymethyl(cobaloxime, thermolysis, 304}
\text{Carboxymethyl(ynocobalamin,}
\text{electronic spectrum, 413}
15-Carboxy-15-norcorbinamide:
\text{decarboxylation, 239}
preparation, 239
vitamin B\(_{12}\), conversion to, 239
Catalysis, sodium borohydride reduction, cobalt complexes, 252
Catalytic reduction, nickel 1,19-dimethyl-
\text{octadecahydrocorrin, 238}
Cation exchange resin, hydrolysis, alkyl-
\text{(pyridine)cobaloximes, 249}
\text{Carboxy(cobaloxime, 515,517}
\text{epi spectrum, alkycobaloximes, 517}
\text{carboxylic acids, 528}
\text{Carboxyaminocobalamin, 239}
\text{Carboxymethylcobaloxime, thermolysis, 304}
\text{Carboxymethyl(cobaloxime,}
\text{electronic spectrum, 413}
15-Carboxy-15-norcorbinamide:
\text{decarboxylation, 239}
preparation, 239
vitamin B\(_{12}\), conversion to, 239
Catalysis, sodium borohydride reduction, cobalt complexes, 252
Catalytic reduction, nickel 1,19-dimethyl-
\text{octadecahydrocorrin, 238}
Cation exchange resin, hydrolysis, alkyl-
\text{(pyridine)cobaloximes, 249}
\text{Cation radicals:}
alkycobaloximes, 515,517
epi spectrum, alkycobaloximes, 517
\text{Cbl, see Cobinamides}
Cbl, see Cobinamides
Cbl, see Cobalamins
Cby, see Cobalamins
CD, see Circular dichroism
Cell dimensions, corrin derivatives, 92-97
Cell free enzymes, corrin biosynthesis, 116
Cerium(III) hydroxide, cobinamide from
\text{vitamin B\(_{12}\), 236}
Change-transfer:
cobaloximes, electronic spectrum, 419
corrin, 403
electronic spectrum, cobalt-carbon bond, 394,403
Chemical degradation, vitamin B_{12}, 111
Chemical formulae, corrin derivatives, 92-97
Chemical shifts (nmr): vitamin B_{12} coenzyme, 465, 470 vitamin B_{12}, 485
Chemical synthesis: cobinamides, 152 vitamin B_{12}, 172-197
Chirality: corrin, 209 vitamin B_{12}, 170
Chiral methyl, methionine, 115
Chiroptic effects, corrin, 207
Chloramine T reaction with: corrin, 215 vitamin B_{12}, 215
Chlorination: dehydrovitamin B_{12}, 215
electronic spectrum, vitamin B_{12}, 215
vitamin B_{12}, 215 3-Chloro-2,2-(2H)-chlorophenyl]ethyl-
cobalamin: trans-4,4-dichlorosilbene, decomposition, 304
Chlorocobalamin, 411 10-Chlorodehydrovitamin B_{12}:
electronic spectrum, 215
preparation, 215
Chloromethylcobaloxime, photolysis, 303
Chloromethylcobaloxime, thermolysis, 304
Chlorosulfonyl azocyanate, cyanation of
corrin, 213
Chromatography:
acid hydrolysis products, vitamin B_{12}, 230
alkylcobaloximes, 247
carboxymethylcellulose, corrin, 249
cobaloximes, 247
corrin, ion exchange, 247, 249
DEAE cellulose, corrin, 249
neocorrinoids, 222
phosphocellulose, corrin, 249
separation of neo and normal corrins, 222
sephadex, corrin , 249
Chronic acid oxidation:
dehydroporamin, 226
vitamin B_{12}, 218
Chromium(II), cobalt complexes, reduction, 254
CIDNP measurements, radical pair recom-
bination, 512
Cinnamyl(imidazole)cobaloxime, reaction
with tetracyanoethylene, 286
Circular dichroism:
aquocobalamin, 420
binding of corrin to apoenzyme, 423
cobalt-free corrin, 421
cobinamides, 421
cobyrinic acid, 421
corrin:
pentadecaalkyl from, 237
sign inversion, 420-426
dicyanocobinamide, 421, 424
α, β-isomers, corrin, 421
methylcobalamin, 420
neocorrinoids, 8-epicorrinoids, 222, 225
protein bound, 426
sinohydrochlorin, 122
tetraacetylcobalamin, 421
vitamin B_{12}, 223,420
vitamin B_{12} coenzyme, 421
cis-Effect:
cobaloximes, 85
corrin, 330
nmr spectroscopy:
cobalt complexes, 487
corrin, 487
vitamin B_{12} halogenation, 216
cis-lysetipinic acid, (+)-camphor conversion
to,174
Claisen rearrangement, amidoacetal,
vitamin B_{12} total synthesis, 184
Cleavage:
cobalt-carbon bond:
photolytic, 524
vitamin B_{12} coenzyme, 547-554
electrophilic, cobalt-carbon bond, 526
energetics, cobalt-carbon bond, 551
halogens, cobalt-carbon bond, 516, 526
homolytic, cobalt-carbon bond, 524
induction, vitamin B_{12} coenzyme, cobalt-
carbon bond,550
mercury(II), cobalt-carbon bond, 526
methylcobalamin, iodine, 316
models, cobalt-carbon bond, 89
modified cobalamins, cobalt-carbon bond,
65
nucleophilic attack, cobalt-carbon bond,
527
Cleavage (Cont'd)
radical transfer, cobalt-carbon bond, 526
sterochemistry, (5)-methylheptyl-pyridinato-cobaloxime, iodine, 317
thallium(III), cobalt-carbon bond, 526
vitamin B_{12} coenzyme, iodine, 316
Clostridium sticklandii, cobalamin, biosynthesis, 153
Clostridium tetra nomorphum, source of corrin, 146
Clostridium thermoacetocum, methyl-cobalamin biosynthesis, 161
CMS, see Vitamin B_{12} carboxylic acids
Co(q-aq)-Co(G)-adenosy((3,5,6-trimethylbenzimidazolocobamide), reaction with cyanide, 306
Coa-cyano-Co(3-alkyl)cobamides preparation, 307
Coa-(a-(5,6-dimethylbenzimidazolyl)) -Co(3-adenosyl)cobamide, see Vitamin B_{12} coenzyme
Co(a-(a-(5,6-dimethylbenzimidazolyl))-CoG-(5-deoxy-5-adenosyl)cobamide, see Vitamin B_{12} coenzyme
Co(BAE), see bis(Acetylacetonato)ethylene-diminecobalt; Cobalt complexes
Co(ch2h2), see bis(bis(2-Cyclohexane-1,2-dionedioximato) cobalt; Cobalt complexes
Co(p2h2), see bis(bis(2-Cycloptane-1,2-dionedioximato) cobalt; Cobalt complexes
Co(d2f2), see Cobaloxime-BF_{2} bridged; Cobalt complexes
Co(d2h2), see Cobaloxime; Cobalt complexes
Co(SALEN), see Ms(Salicylaldehyde)-e hylenediminecobalt; Cobalt complexes
Co(SALOPH), see bis(Salicylaldehyde-o-phenylenediminecobalt; Cobalt complexes
Co(tetral), see Vitamin B_{12}
Co(tetral)aloxime: alkylation:
alkyl halides, 523
olefin add, ion, 523
sterochemistry, 523
U-Ms-(p-chlorophenyl)-2,2,2-trichloro-ethane, reaction with, 286
2-hydroxyethyl-cobaloxime, reaction with alkali, 310
nucleophilicity, 523
trifluoromethyl-cobaloxime, reaction with h hydroxide, 309
Cob(tetral)aloxime;

electronic spectrum, 419
nucleophilicity, 250, 251
nucleophilicity, 523
Cob(tetral)aloxime, see Vitamin B_{12} coenzyme
Cob(tetral)aloximes:
alkylation, axial ligand effects, 519
disproportionation, 253
photolysis, methyl-cobaloxime, 301
reaction with equilibrium data, 504
kinetics, 504
1-phenylethyl-cobaloximes, 504
Cob(tetral)amide;
epr spectrum simulation, table, 446
fifth axial ligands, epr parameters, table, 444
Cob(tetral)amide:
electronic spectrum, 418
epr spectroscopy:
anisotropic hyperfine interaction, 443
function of fifth ligand, table, 444
epr spectrum, high pH, 434, table, 447
magnetic circular dichroism, 426
oxygenation, epr spectrum, 458
Cobalamin auxotrophs, 163
Cobalamin coenzymes, interconversion, 163
Cobalamin phosphate, dephosphorylation, E. coli alkaline phosphatase, 155
Cobalamin reductases, 158
Cobalamins:
aggregation, 491
aldehyde vs. cobinamides, 369
biosynthesis:
addition of lower base, 153
Aerobacter aerogenes, 160
Clostridium sticklandii, 153
from cobyric acid, 148
L. leichmannii, 160
nicotinate mononucleotides, 153
5-phosphoheptohexulopyrophosphate, 153
ribose-1-phosphate, 153
bound to human intrinsic factor, table, 170
electronic spectrum, 417
cobyrnic acid, conversion to, 148
configurations, N-glycosides, 153
Cobalamins (Cont'd)
conversion to vitamin B12 coenzyme, 156
coordination, mercury(II), 495
correlation between nmr and electronic
spectrum, 418
deficiency, 157
as-diaminoplatinum(II) coordination, 495
electron (hydrated), 254
FAD, 157
FMN, 157
NADH, 157
epr comparison to cobinamides, 448
epr spectroscopy, 433-442
isomeric forms, nmr spectroscopy, 484
13C-labelled, 474
nmr spectroscopy:
fluxionality, 490
pH dependence, 493
temperature dependence, 463-500
nmr spectrum, 474
nomenclature, 17
nucleotide loop biosynthesis, 148
prototrophs, 155
reaction with metal ions, 495
secondary alkyl, 255
zinc, 253
Cobalocorrin, structure, 203
Cobaloxime, structure, 246
Cobaloxime-BF2 bridged, nucleophilicity
cobalt(I), 251
Cobaloxime, structure, 246
Cobaloxamines:
addition to olefins, mechanism, 264
alkylation:
hydrazines and oxygen, 275
kinetics, table, 259
aryl derivatives, 270
axial phosphines, bond lengths, 83
bridged dimers, 268
chromatography, 247
m-effect, 85
cobalt ligand bond distances, tables, 82-84
dimethylsulfide complexes, 248
electronic spectrum, charge-transfer, 419
folding, 59
hydrogen reduction, 252
intramolecularly bridged, 269
MO-calculations, 419
model for corrin, 419
nmr spectrum, 247
nucleophilicity, cobalt(I) complexes, 251
optically active, alkyl ligands, 268
photolysis, 419
planarity deviations, 505
reduction, sodium borohydride, 251
reductive alkylation, 248
stERIC effects, 86
structure, 246
tertiary alkyl, 254
Traws-effect, table, 82
X-ray crystallographic data, 80-90
X-ray crystallography, vitamin B12, 23-106
Cobalt:
alkylation, nitromethane, 280
cobalt complexes, electronegativity, 490
coordination, 47
hydrides:
P-K values, 335
stability, 335, 365
incorporation into:
15-cyano-1,2,2,7,7,12,12-heptamethyl-
corrin, 211
vitamin B12, 211
model systems, 378
organic radical rearrangements, role of, 533
recombination with alkyl radicals, 335
reduced, X-ray crystallography, 69
reduction by alkali, B128 formation, 226
role in vitamin B12 chemistry, 333, 335
unique biologically, redox chemistry, 340
Cobalt 15-cyano-2,2,7,7,12,12,12-heptamethyl-
corrin:
electronic spectrum, 424
structure, 423
Cobalt 15-cyano-7,7,12,12,19-pentamethyl-
corrin:
electronic spectrum, 424
magnetic circular dichroism, 424
Cobalt 15-cy-anocorrin, 7,7,12,12-tetramethyl-
corrin:
electronic spectrum, 424
structure, 423
Cobalt 2,2,7,7,12,12,15-heptamethylcorrini:
electronic spectrum, 424
structure, 423
Cobalt 2,2,7,7,12,12-hexamethylcorrinn:
electronic spectrum, 424
structure, 423
Cobalt 7,12,12-tetramethylcorrin:
electronic spectrum, 424
structure, 423
Cobalt carbenes, 576
Cobalt-carbon bond:
activation enthalpy:
 homolytic cleavage, 511
kinetics, 511
biosyn thesis:
eukaryotes, 155
prokaryotes, 155
timing, 155
bond angles:
 β-elimination, 369
protein effects, 373
steric effects, 355, 372
bond dissociation energy:
avail ligands, 351
conformational changes, 531
1-cyanocobaloxime, 511
isopropylcobaloxime, 511
1-methyl-1-heptylcobaloxime, 507, 511
1-methyl-2-phenylethylcobaloxime, 511
steric effects, 531
bond lengths:
isopropyl(pyridine)cobaloxime, 505
isopropyl(tricyclohexylphosphine)-
cobaloxime, 506
isopropyl(triphenylphosphine)-
cobaloxime, 505
methyl(aquo)cobaloxime, 505
methyl(pyridine)(3-acetylacetone)-
ethylendiminecobalt, 505
methyl(pyridine)acetylacetonecobalt, 505
methyl(triphenylphosphine)cobaloxime, 505
vinyl(pyridine)(salicylaldheyde)-
ethylendiminecobalt, 505
vinyl(pyridine)cobaloxime, 505
vitamin B_{12} coenzyme, 505
bond strength, vitamin B_{12} coenzyme, 505
charge-transfer, electronic spectrum, 454
cleavage:
corrin ring, distortion, 65
cyanide, 306
electrophilic, 526
energetics, 551
halogen, 516, 526
homolytic, 524
induction, vitamin B_{12} coenzyme, 550
mercury(II), 526
models, 88
model systems, vitamin B_{12} coenzyme, 551
modified cobalamins, 65
nucleophilic attack, 527
radical transfer, 526
thallium(III), 526
vitamin B_{12} coenzyme, acid 312, enzymic
reactions, 507, 547
covalent, comparison to C-C bond, 337
covaient bond, 335
dissociation energy determination:
equilibrium, 507
kinetics, 511
photochemical, 507
thermochemical, 507
distortion, protein, 373
energies, 554
energy, 1,4,8,11-tetraazaclotetra-
decanecobalt(III), 554
factors affecting bond dissociation energy,
 vitamin B_{12} coenzyme, 531
formation:
 alkylation, cobalt(III) complexes, 517
 CoDEP, 279
halogen cleavage, stereochemistry, 317
heterolytic cleavage, 362
homolytic cleavage, 296, 362
 halogenation, 512
 labilization, protein, 333
 labilization by steric interactions, 361
 length, alkylcobalt complexes, table, 505
 lengths, 54
 alkylcobaloximes, 359
 isopropylcobaloxime, 505
 methyl(pyridine)cobaloxime, 505
metalloporphyrins, 246
models for cleavage, vitamin B_{12} coenzyme, 551
photochemical cleavage, 362, 524
photolysis, 296
polarizability, nmr spectroscopy, 489
preparation, cobalt(III) complexes, 271-277
protection by peripheral groups, 90
protection by side chains, vitamin B_{12}
coenzyme, 41
pyrolysis, 303
reaction with electrophiles, 312-317
reductive cleavage:
carbon monoxide, 515
thiols, 317, 515
role of 4s and 4p orbitals, 338
Cobalt-carbon bond (Cont’d)

stability vs. metal, 339
steric compression, distortion, 359
steric crowding, bond length, 505, 506
steric effects, bond dissociation energy, 512

synthesis:
analysis of reaction mixtures, 247
work up of reaction mixtures, 248
thermal cleavage, 362
thermal dissociation, 1-phenylethyl-(pyridine)cobaloxime, 509
thermodynamic stability, 336
thermolysis:
alkylcobalamins, 525
alkylcobalt complexes, 525
Vitamin B₁₂ coenzyme:
acid decomposition, 366
alkaline decomposition, 366
cleavage, 547–554
5'-deadenosyl carbanion, and elimination, 549
5'-deadenosyl carboxylation, 548
5'-deadenosyl radical, 548
heterolytic cleavage, 548
homolytic cleavage, 548
stability, 386
vitamin B₁₂, photolysis, 297
Cobalt-carbon intermediates, vitamin B₁₂ coenzyme, 382
Cobalt complexes:
alkylation, hydrazines and oxygen, 275
catalysis, sodium borohydride, 252
cis-effect, nmr spectroscopy, 487
electron negativity, cobalt, 490
hydrogen, reduction, 252
mechanism, reductive alkylation, 258–267
potassium, reduction, 254
redox chemistry, Schiff-base complexes, 514
reduction:
chromium(II), 254
electrochemistry, 254
sodium borohydride, 251
thiols, 254
reductive alkylation, 250
reductive arylation, electron transfer
mechanism, 271
rhodium corrin, comparison to, 72
sodium amalgam reduction, 254
sodium borohydride reduction, 251
sodium reduction, 254
trans-effect, nmr spectroscopy, 488
see also Alkylcobalt complexes
Cobalt corrin:
bond angles, tables, 45–53
bond distances, tables, 45–53
folding, 60
planarity deviations, 61
torsion around A-D junction, 57
Cobalt-free corrin:
circular dichroism, 421
electronic spectrum, pH, 401
fluorescence spectrum, 402, 422
from Bacterium chromatium, 401
magnetic circular dichroism, 423
Cobalt-free corrinoid:
electronic spectrum, 413
luminescence, 426
Cobalt orbitals, interaction with corrin
w-orbitals, 561
Cobalt porphyrins, alkylation, diazoalkanes, 281
Cobalt(I) complexes:
acetylene, addition to, 256
acrylonitrile:
addition to, 256
olefin T-complexes, 527
addition to:
olefins, mechanism, 258
unsaturated electrophiles, 256
allylation:
alkyl halides, 523
electron transfer, 259
kinetics, 258
olefin addition, 523
terochemistry, 502, 523
alkylicobalt(II) complexes, trans-alkylation, 527
alkynes, addition to, 256
Cobaloxime-BF₂ bridged, nucleophilicity, 251
cobaloximes, nucleophilicity, 251
bis[(2-cyclopentanedionato)cobalt, nucleophilicity, 251
decomposition, 252
diacetylmonoximemimido diacetylmonoximate, 1,3-cobalt,
nucleophilicity, 251
three-3,3-dimethylbuty-1,1,2,2-trifluoromethyl sulfonate, reaction with, 260
Cobalt(I) complexes (Cont'd)
effect of axial ligands, nucleophilicity, 252
electron-donor strength, ligand redox potential, 504
electronic spectrum, 262
epoxides, reaction with, 256
equilibrium, hydridocobalt complexes, 506
etheneimine, reaction with, 257
mechanism, olefin addition, 262
methylacrylate addition, 256
nmr spectroscopy, 486
nucleophilicity:
effect of axial ligands, 252
table, 251
olefins, addi ion, 256
phenylacetylene, addition, 256
olefins, addition, 256
phenylacetylene, addition, 256
pH function, olefins, 523
preferred coordination number, 504
propargyl alcohol, addition, 256
propyne addition, 256
reactions, 263
redox potential, table, 251
stereochemistry, vinyl halides, alkylation, 260
3,3,3-trifluoropropyne, addition, 257
see also Cob(I)inamide; Hydridocobalamin; Hydridocobaloxime; Vitamin B12

Cobalt(II) complexes:
alkylation:
alkyl halides, 518
alcoholic solutions vs. other alkyl halides, 522
radical intermediates, 518
electronic structure, 438
epr spectroscopy, 433
halogen abstraction, alkyl halides, 274, 519
methyl radicals, recombination with, 335
nmr spectroscopy, 486
ochtals, 438, 440
organic radical interaction, epr spectrum, 450
outer-sphere electron transfer, Schiff-base complexes, 519
preferred coordination number, 504
reaction with:
alkyl halides, 273
ketones, 273, 274, table
organic radicals, 271
reactivity toward alkyl halides, table, 521
spin-Hamiltonian, 436
Cobalt(III) complexes:
acetylene, carbanion reaction, 279
alkylation:
acetone, 517
diazokanes, 281
Grignard reagent, 277, 517
organolithium reagents, 517
carbenes, reaction with, 279
carbon monoxide, oxidation, 515
cobalt-cobalt bond:
formation, alkylation, 517-524
preparation, 271-277
electronic spectrum, 394
endts, reaction with, 279
ethyl vinyl ether, reaction with, 281
2-hydroxyethylvinyl ether, reaction with, 282
malononitrile, reaction with, 279
nucleophilic attack, 284
olefin tr-

Cobalt(I) complexes:
effect of axial ligands, nucleophilicity, 252
electron-donor strength, ligand redox potential, 504
electronic spectrum, 262
epoxides, reaction with, 256
equilibrium, hydridocobalt complexes, 506
etheneimine, reaction with, 257
mechanism, olefin addition, 262
methylacrylate addition, 256
nmr spectroscopy, 486
nucleophilicity:
effect of axial ligands, 252
table, 251
olefins, addi ion, 256
phenylacetylene, addition, 256
olefins, addition, 256
phenylacetylene, addition, 256
pH function, olefins, 523
preferred coordination number, 504
propargyl alcohol, addition, 256
propyne addition, 256
reactions, 263
redox potential, table, 251
stereochemistry, vinyl halides, alkylation, 260
3,3,3-trifluoropropyne, addition, 257
see also Cob(I)inamide; Hydridocobalamin; Hydridocobaloxime; Vitamin B12

Cobalt(II) complexes:
alkylation:
alkyl halides, 518
alcoholic solutions vs. other alkyl halides, 522
radical intermediates, 518
electronic structure, 438
epr spectroscopy, 433
halogen abstraction, alkyl halides, 274, 519
methyl radicals, recombination with, 335
nmr spectroscopy, 486
ochtals, 438, 440
organic radical interaction, epr spectrum, 450
outer-sphere electron transfer, Schiff-base complexes, 519
preferred coordination number, 504
reaction with:
alkyl halides, 273
ketones, 273, 274, table
organic radicals, 271
reactivity toward alkyl halides, table, 521
spin-Hamiltonian, 436
Cobalt(III) complexes:
acetylene, carbanion reaction, 279
alkylation:
acetone, 517
diazokanes, 281
Grignard reagent, 277, 517
organolithium reagents, 517
carbenes, reaction with, 279
carbon monoxide, oxidation, 515
cobalt-cobalt bond:
formation, alkylation, 517-524
preparation, 271-277
electronic spectrum, 394
endts, reaction with, 279
ethyl vinyl ether, reaction with, 281
2-hydroxyethylvinyl ether, reaction with, 282
malononitrile, reaction with, 279
nucleophilic attack, 284
olefin tr-
Cobinamides (Cont'd)
a, b-isomers, electronic spectrum, 413
steric interactions, epr spectrum, 448
structure, 235
from vitamin B_{12}, cerium(III) hydroxide, 236
vitamin B_{12}, conversion to, 234
Cobyrinic acid, nomenclature, 17
Cobyric acid:
bond angles, tables, 45-53
bond distances, tables, 45-53
structure, 34, 148, 170
torsion around A-D junction, 57
total synthesis, 187, 196
trimethylated isobacteriochlorins, incorporation into, 132
vitamin B_{12}, conversion to, 235
X-ray crystallographic data, diagram, 34
Cobyrinic acid a and b, 197
Cobyric acid, acid hydrolysis, vitamin B_{12}, 230
biosynthesis:
origin of carbon atoms, 112
primary precursors, 111
unporphyrinogen(III) as precursor, 116
Factor I:
incorporation into, 131
reduced form, incorporation into, 131
nomenclature, 17
sirohydrochlorin, incorporation into, 123
structure, 109
unporphyrinogen III, biosynthetic precursor, 116
Cobyric acid a, d-diamide:
preparation, 37
X-ray crystal structure (diagram), 34
Co [[CO(DO)(D)O]pn], see Diacetylmono ximeimino
diacetylmomeximato-iminopropane-3-cobalt: Cobalt complexes
Coenzyme, see Vitamin B_{12} coenzyme
Coenzyme B_{12}, see Vitamin B_{12} coenzyme
Coenzyme func ion, vitamin B_{12}, 147
Cofactor:
2,6-diaminoheptane mutase, pyridoxal phosphate, 574
glutathione, nucleotide loop biosynthesis, 152
Color and clinical activity, vitamin B_{12}, 8
Comparison to:
cobalt complexes, rhodium corrin, 72
crystal structure, conformations, 482
model systems:
vitamin B_{12}, 504
vitamin B_{12} coenzyme, 504
vitamin B_{12}, nonvitamin B_{12}, 35
vitamin B_{12} coenzyme, table, vitamin B_{12}, 53
X-ray structure, nmr spectroscopy, molecular structure in solution, 482
Conformational interactions, electronic spectrum, 398, 404
Conformations:
corrin, 209
N-glycosides, cobalamins, 153
Conformational changes:
cobalt-carbon bond, bond dissociation energy, 531
vitamin B_{12} coenzyme, 374
Conformations:
alkylcobalamins, 341
comparison to crystal structure, 482
corrin, table, 50, 51
corrin ring side chain, 52, 54, 63
corrin side chain, 207, 341
electronic structure and spectrum, 343
neovitamin B_{12}, 209
nickell (I) 15-cyano-7,7,12,12,19-
pentamethylcorrin chloride, 208
nucleosides, 70
nucleotide loop, 65
nucleotides, 70
side chain, 52, 54
vitamin B_{12}, ribose ring, 550, 554
side chain, 208
Conjugated system:
addition to corrin, 238
Conjugated system (Cont’d)
corrin, 61, 203
vitamin B_{12}, 238
Constraint of axial ligands, vitamin B_{12}
corexone, 41
Conversion to:
2-alkoyalkylcobaloximes, 2-acetoxy-
alkylcobaloximes, 575
D-1-amino-2-propanol, L- hydroxine, 199
15-carboxy-5-norcobinamide, vitamin
B_{12}, 239
cobalamins, cobyric acid, 148
cobinamides, vitamin B_{12}, 234
cobyrinic acid, vitamin B_{12}, 235
dicyanocobalamin, standard electronic
spectrum for vitamin B_{12}, 395
heptamethyl dicyano-5, 15-bisnorobyr-
inate, vitamin B_{12}, 239
heptamethyl dicyanoobyrinate, vitamin
B_{12}, 236
cis-isoketipinic acid, (+)-camphor, 174
methylcobalamin, vitamin B_{12} corexone, 163
sirilactone, sirihydrocholorin, 123
vitamin B_{12}, cobyric acid, 197
vitamin B_{12} corexone, cobalamins, 156
methylcobalamin, 163
CoOEP, cobalt-carbon bond formation, 279
5- and 6-Coordinate:
alkylcobalamins, 345, 351
cobinamides, equilibria, 350
corrin, axial ligands, 346
homolytic cleavage, 371
vitamin B_{12} corexone, 346
Coordination:
alkylcobalamins, ow-diaminoplatinum(II), 495
alkylcorrins, imidazole, 358
cobalamins, ow-diaminoplatinum(II), 495
cobalt, 47
mercury(II), cobalamins, 495
l-(2-fluoromethylphenyl)imidazole, heptamethylcobyrinate, 495
vitamin B_{12} corexone, cis-diamino-
platinum(II), 497
vitamin B_{12}, 5,6-dimethylbenzimidazole, 486
Coordination chemistry:
adenylocobamide, 351
vitamin B_{12}, 325-392
Coordination number, cobalt complexes, 504
Copper analog, vitamin B_{12}, 211
Copper cobalamin, magnetic circular dich-
roism, 426
Copper incorporation into vitamin B_{12}, 211
Correlation between nmr and electronic
spectrum, cobalamins, 418
Corrin biosynthesis:
bilanes:
aminomethyl, 117
hydroxy methyl, 118
1-methyl, 121
broken cell enzymes, 116
cell free enzymes, 116
decarboxylation, C-12, first step, 120
porphobilinogen deaminase, 117
secocorrins, intermediates in, 116
spirocyclic intermediate, 118
unporphyrinogen III, loss of, C-20, 137,
139, 145-167
Corrin π-orbitals, cobalt orbitals, interactions, 561
Corrin precursor, aminomethylbilane, 117
Corrin reduction, ferredoxin, 254
Corrin ring:
S-adenosylmethionine, activation, 345
C-10 chemical shifts vs. electronic
spectrum, 487
conjugation, 61
deforma ions, 63
5'-deoxyadenyl ligand, interactions with, 66
5,6-dimethylbenzimidazole, interaction with, 28,363
distortion, cobalt-carbon bond cleavage, 65
folding, benzimidazole effect on, 59,
60 (table)
gadolinium(III), shift reagent, 472,
482
nmr spectrum:
C-10 proton, 469
lanthanide shift reagents, 471, 482
paramagnetic shifts, 471
1H/2H exchange, 469
nmr spectrum (13C), 479
side chain, 480
planarity, 54
puckering, 54
side chain, conformations, 52, 54, 63
vitamin B_{12} corexone, nmr spectrum, 469
Corrin:
adenosylation, 155
affinity chromatography, 268
alkylation, 214
alkyl ligands, effect on physical properties, table, 356
5-aminolevulinic acid, incorporation into, 111
aromaticity, 204
axial ligands:
5- and 6-coordinate, 346
steric requirements, 255
biomass:
Euglena gracilis, 117
Propionibacterium shermanii, 112
bond angles, distances, tables, 45-53
bond lengths, observed and calculated, 205,48 tables, 49, 206
bromination, 215
buckling, 208, 342
canonical resonance structures, 205
charge-transfer, 403
circular dichroism, 403-426
cis-effect, nmr spectroscopy, 330, 487
Clostridium tetanomorphum, source of, 146
circular dichroism, a, 0-isomers, 420-426
cobalt-free, electronic spectrum, 207
cobalamins, 369
crystallization, 249
cyano, 213
cyano, 213
cytochrome c, 249
cyclization (peripheral):
lactam formation, 225
lactone formation, 226
xanthocorrinoids, 228
dehydrogenation, 238
demetalation, 210
deuteriation, 212, 220
dimethylaminomethylation, 213
dimethyl(methylene)ammonium iodide, reaction with, 213
distortion, 207
distortion, polarization effects, 393-430
distortion, electronic spectrum, 393-430
electrophilic substitution, MO-calculations, 212,345
electrophoresis, 249
epimerization, equilibrium constants, table, 222
epimerization, mechanism, 224
MO-calculations, 220
epimerization, reaction with, 207
epimerization, reaction with, 207
Euglena gracilis, 117
Propionibacterium shermanii, 112
magnetic properties, 330
meso-methyl groups:
oxidation, 239
PKA values, 239
meso-substitution, 212
metal-free, electronic spectrum, 207
metal-free, electronic spectrum, 207
metallation, 210-212
methionine:
incorporation into, 111
CD, incorporation into, 114
molecular orbitals, 397
magnetic properties, 330
meso-methyl groups:
oxidation, 239
PKA values, 239
meso-substitution, 212
metal-free, electronic spectrum, 207
metallation, 210-212
methionine:
incorporation into, 111
CD, incorporation into, 114
molecular orbitals, 397
5-coordinate, decomposition, alkyl
cobalamins, 369
crystallization, 249
cyano, 213
cytochrome c, 249
cyclization (peripheral):
lactam formation, 225
lactone formation, 226
xanthocorrinoids, 228
dehydrogenation, 238
demetalation, 210
deuteriation, 212, 220
dimethylaminomethylation, 213
dimethyl(methylene)ammonium iodide, reaction with, 213
distortion, 207
distortion, electronic spectrum, polarization effects, 393-430
electrophilic substitution, MO-calculations, 212,345
electrophoresis, 249
epimerization, equilibrium constants, table, 222
epimerization, mechanism, 224
MO-calculations, 220
epimerization, reaction with, 207
epimerization, reaction with, 207
Euglena gracilis, 117
Propionibacterium shermanii, 112
magnetic properties, 330
meso-methyl groups:
oxidation, 239
PKA values, 239
meso-substitution, 212
metal-free, electronic spectrum, 207
metallation, 210-212
methionine:
incorporation into, 111
CD, incorporation into, 114
molecular orbitals, 397
5-coordinate, decomposition, alkyl
cobalamins, 369
crystallization, 249
cyano, 213
cytochrome c, 249
cyclization (peripheral):
lactam formation, 225
lactone formation, 226
xanthocorrinoids, 228
dehydrogenation, 238
demetalation, 210
deuteriation, 212, 220
dimethylaminomethylation, 213
5-coordinate, decomposition, alkyl
cobalamins, 369
crystallization, 249
cyano, 213
cytochrome c, 249
cyclization (peripheral):
lactam formation, 225
lactone formation, 226
xanthocorrinoids, 228
dehydrogenation, 238
demetalation, 210
deuteriation, 212, 220
dimethylaminomethylation, 213
dimethyl(methylene)ammonium iodide, reaction with, 213
distortion, 207
distortion, electronic spectrum, polarization effects, 393-430
electrophilic substitution, MO-calculations, 212,345
electrophoresis, 249
epimerization, equilibrium constants, table, 222
epimerization, mechanism, 224
MO-calculations, 220
epimerization, reaction with, 207
epimerization, reaction with, 207
Euglena gracilis, 117
Propionibacterium shermanii, 112
magnetic properties, 330
meso-methyl groups:
oxidation, 239
PKA values, 239
meso-substitution, 212
metal-free, electronic spectrum, 207
metallation, 210-212
methionine:
incorporation into, 111
CD, incorporation into, 114
molecular orbitals, 397
5-coordinate, decomposition, alkyl
cobalamins, 369
crystallization, 249
cyano, 213
cytochrome c, 249
cyclization (peripheral):
lactam formation, 225
lactone formation, 226
xanthocorrinoids, 228
dehydrogenation, 238
demetalation, 210
deuteriation, 212, 220
dimethylaminomethylation, 213
15-Cyano-l,2,2,7,7,12,12-heptamethyl-corrin (Cont’d)
electronic spectrum, 401
lithium, incorporation into, 211
metallation, 211
nickel, incorporation into, 211
rhodium, incorporation into, 211
structure, 211
zinc, incorporation into, 211
15-Cyano-l,2,2,7,7,12,12-heptamethyl-corrin hydrochloride:
cell dimensions, 95
chemical formula, 95
space group, 96
X-ray crystallographic data, 96
Cyano-1,8,8,13,13-pentamethyl-5-cyano-16-ethoxy-14-[2-imino-propenyl] -
CD secocorrin perchlorate:
cell dimensions, 97
chemical formula, 97
space group, 97
X-ray diffraction data, 97
Cyanoacuobcinamide, \(\alpha, \beta \)-isomers, nmr
spectrum, 484
Cyanoacobalamin: vitamin B\(_12\), total synthesis, 169-200
Cyanoacobalamin: vitamin B\(_12\), 17
see also Vitamin B\(_12\)
R-\(\alpha \)-cyanoethyethyl(5-\(\alpha \)-methylbenzylamine)-
cobaloxime, racemization, X-ray
crystallography, 88
Cyanoacetylcobalamin: alkaline decomposition, 366
reaction with alkali, 310
1-Cyanoacetylcobaloxime, cobalt-carbon
bond, bond dissociation energy,
511
Cyanoaminocobalamin, electronic
spectrum, 343
Cyanoaminocobaloxime, thermolysis, 304
Cyclic nucleoside, structure, 554
Cyclic 2’,3’-\(\beta \)-diazol phosphate, vitamin B\(_12\), total synthesis,
194
8,5’-Cyclic-adenosine, see 5’-Deoxy-8,5’-
cyoadenosine
Cyclization:
corrin, secoacorrindione, 219
5’-deoxyadenosyl radical, 554
lactam formation, corrin, 225
lactone formation, corrin, 226
xanthocorrinoids, corrin, 228
Cyclobutylcobalamin, rate of decom-
position, 368
Cyclooctyl-l-d-iodido, reaction with
vitamin B\(_12\), 261
Cyclohexylcobalamin: electronic spectrum, 255
rate of decomposition, 368
Cyclohexylcobaloxime, thermolysis,
304
Cyclohexynitrone, vitamin B\(_12\) total
synthesis, 192
Cyclohexyl-3, 5, 6-trimethylbenzimidazoyl-
cobamide, preparation, 255
Cypentocobalamin, ra te o f decom-
position, 368
Cyclopropane formation, pentacyanocobaltate
1,3-diodopropane, 519
Cyclopropylcarbonylcobalamin rearrange-
ments, but-3-ethylcobalamin, 362, 379,567
Cyclopropylcarbonylcobaloxime rearrange-
ments, 381
Cyclopropylcarbonylcobamide, preparation, 255
Cyclopropylcarbonyl radical rearrange-
ments, but-3-ethyl-
(pyridine)ocobaloxime, 568
Cyclopropylcarbonyl radical reactions, 368
Cycloproplcarbonylcobalamin, rate of decomposition, 368
Cycloproplcarbonylcobamide, 570
Cylindrical projection, X-ray structure, 97
Cysteinyllcobalamin, ele c tronic spectrum, 411
Danoylidopropylcobalamin preparation,
267
DBC, see Vitamin B\(_12\) coenzyme
DEAE cellulose, corrin chromatography,
249
Dealkylation alkylcobalamins, thiols,
alkylcobaloximes, 527
Deamination, nicotinate mononucleotide,
153
Deamination, see Porphobilinogen deaminase
Deamination: aminomethylbilanes, porphobilinogen
deaminase, 117
bilanes, aminomethyl, 118
Decarboxylation:
C-12, first step in corrin biosynthesis,
120
Decarboxylation (Cont’d)
15-carboxy-15-norcobinamide, 239
5,15-dicarboxy-5,15-dinorcobinamide, 239
[R]-l-amino-2-propanol, threonine, 150
Decomposition:
in acid, β-hydroxyethylaquocobaloxime, 313
acid catalysis, alkylcorrins, 369
alkylcobalamins: corrin five coordinate, 369
rate of, 365, 368, 370
very strained, rate of, 371
alkylcorrins, olefins, 365
1-chloro-2,2-β-(p-chlorophenyl)ethyl-cobalamin, trans-4,4'-dichlorostilbene, 304
cobalt(II) complexes, 252
cyclobutylcobalamin, rate, 368
cyclohexylcobalamin, rate, 368
cyclopentylcobalamin, rate, 368
cyclopropylcobalamin, rate, 368
methylcobalamin, rate, 368
neopentylcobalamin, rate, 368
2-norbornylcobalamin, rate, 368
Decyanation, vitamin B12, ferredoxin, 163
Deficiency, cobalamins, 157
Definition, nucleophilicity, 250
Deformations, corrin ring, 63
Dehalogenation, vitamin B12, 217
Dehydration:
1,2-dihydroxyethyl radical, 573
yellow corrinoids, 229
dehydrocobinamide: chronic acid oxida ion, 226
mechanism of formation, 226
see also Lactams (corrin ring)
dehydrocobin: bond angles, distances, tables, 45-53
torsion around A-D junction, 57
dehydrotetrahydro, corrin, 238
dehydrovitamin B12
chlorination, 215
structure, 215
demetallation:
corrin, 210
siroheme, 128
vitamin B12, 210
5-Deoxycytidine, 441, 558
hydrogen abstrac ion, 554
intermediate, vitamin B12 coenzyme, 332
VitaminB12 coenzyme: ribonucleotide reductase, 577
thiols, photolysis, 299, 545
5'-H5-deoxyadenosine, 296
5'-Deoxyadenosyl carbamion, 549
5'- Deoxyadenosyl carbocation, stabiliza tion, 549
5'-Deoxyadenosyl ligand: interactions with corrin ring, 66
nmr spectrum (13C), 477
5'-Deoxyadenosyl ligand, vitamin B12 coenzyme, nmr spectrum, 468
5-H-Deoxyadenosyl ligand, nmr spectrum, VitaminB12 coenzyme, 471
5'-Deoxyadenosyl radical: cyclization, 554
formation:
8-position modification, 298
reactions, 297, 363
reaction with vitamin B12, 373
stabilization, 548
vitamin B12 coenzyme: enzymic reaction, 554
ribonucleotide reductase, 577
5'-Deoxy-5',5'-cycloadenosine: formation, 297
structure, 297
5'-Deoxy(5'-etheno)-adenosylcobalamin, preparation, 285
5'-Deoxy-5'-halonucleoside preparation, vitamin B12 coenzyme analogs, 267
Dephosphorylation, cobalamin phosphate, 154
D-erythro-2,3-Dihydroxy-4-pentenal, vitamin B12 coenzyme and cyanide, 305
Desocobaltocobalamin, metallation, 211
Desocobaltocobamide: electronic spectrum, pH, 211
metallation, 211
Desocobaltocobic acid, 211
Desulfoviridin, sirohydrochlorin isolation, 122
Deuteration:
corrin, 212, 220
dicyanocobalt(III) tetramethylcorrin, 212
ethylicobinamide, 345
metalcorrins, 220
vitamin B12, hexacarboxylic acid, 212
see also 1H/ 2H exchange
Deviations from planarity, corrins, 61
Diacetylmonoximeimino diacetylmonoximatoiminopropane-1,3-cobalt:
alkyl complexes, redox chemistry, 514
nucleophilicity, cobalt(II), 291, 523
pKa values, 504
redox potential, 504
structure, 503
Diacetylmonoximeimino diacetylmonoximatoiminopropane-1,3-cobalt(II):
alkyl complexes, photolysis, 524
nucleophilicity, 523
2,6-Diaminohexanoate mutase, pyridoxal phosphate co-factor, 574
(R)-2,6-Diaminohexanoate, 546
(S)-3,6-Diaminohexanoate, 546
3,5-Diaminohexanoic acid, 328
2,5-Diamino-2,5-dihydroxy-2-hydroxy-cobyrinic acid pentamethylester-c,clactone, see Yellow corrinoids
5,15-Dicarboxy-5,15-dinorcobinamide: decarboxylation, 239
preparation, 239
5,6-Dichlorobenzimidazole, X-ray diffraction data, vitamin B12, 27
Dichloromethylcobalamin, photolysis, 303
trans-4-4'-Dichlorostilbene, decomposition I-chloro-2,3-bis (p-chlorophenyl)-ethylcobalamin, 304
Dicyanocobaloximes, preparation, 268
Dicyanocobalamin:
electronic spectrum, 413
nmr spectrum, 13 C, biosynthetic studies, 112
nmr spectrum, 31 CN enriched, 478
standard electronic spectrum, vitamin B12, 395
Dicyanocobalt(III) tetramethylcorrin, deuteration, 212
Dicyanocobinamide:
circular dichroism, 421, 424
electronic spectrum, temperature variation, 348, 395, 408, 424
table (13C), nmr spectrum, 476
Dicyanocobyrinic acid-c-diamide):
cell dimensions, 94
chemical formula, 94
space group, 94
X-ray crystallographic data, 94
Dicyanocobyrinic acid, structure, 206
Dicyanocobyrinic acid, allog hexamethyl ester-nitrile, 214
Dicyano-5,6-dihydropicolinic acid, 57
Dicyano-5,6-dihydropicolinic acid pentamethylester-c,clactone, see Yellow corrinoids
Dicyanocobyrinic acid, allog hexamethyl ester-nitrile, 214
Dicyano-5,6-dihydro-cobyrinic acid pentamethylester-c,clactone, see Yellow corrinoids
Dicyanoheptamethylcobyrinate, magnetic circular dichroism, 426
Dicyano-5-hydro-6-amino-dihydropicolinic acid pentamethylester-fl-amide-c,clactone, see Yellow corrinoids
Dicyan-5-5'-hydro - 6- amino - dihydro-cobyrinic acid pentamethylester-fl-amide-c,clactone, see Yellow corrinoids
4', 5'-Didehydro-5'-deoxyadenosine, 441
4', 5'-Didehydro-5'-deoxyadenosine: formation, 297
structure, 297, 308
Diels-Alder, Lewis-acid catalyzed, vitamin B12 total synthesis, 183
2,2-Diethoxyethylcobalamin, preparation, 281
Diethylaminoethyl cellulose, see DEAE cellulose, corrin chromatography
8.12-Diethyl-2,3,7,13,17,18-hexamethyl-corrole: cell dimensions, 96
hydrobromide, X-ray crystallographic data, 96
X-ray crystallographic data, 96
Difference electron density map, X-ray structure, 97
Difluorochloromethylcobalamin, reaction with cyanide, 307
Dihalomethylcobaloximes, reaction with alkali, 309
Dihydrodimethylisobacteriochlorin, 141
Dihydromethylboronitrile, 139
Dihydrosirohydrochlorin, 139
Dihydroxyalkylcobaloximes, preparation, 284
Dihydroxyalkylcobalt complexes, models for enzymic reaction, 572
1,2-Dihydroxyethyl radical, vitamin B$_{12}$ coenzyme, diol dehydrase, 571
2,3-Dihydroxypropylcobalamin: glyceraldehyde, photolysis, 302
glyceric acid, photolysis, 302
2,3-Dihydroxypropylcobalamin: pentanol oxidation, 284
photolysis, 302
1,3-Diiodopropane, cyclopropane formation, 522
Dimeric complex with isoside, heptamethylcobalylamine, 522
Dimethylaminomethylation, corrin, magic Mannich, 213
vitamin B$_{12}$, 213
Dimethylated isobacteriochlorins, structure, 123
Dimethylbenzimidazolylcobinate, reaction with vitamin B$_{12}$, 564
Dimethylisobacteriochlorins, reaction with corrin, 213
5,6-Dimethylbenzimidazolcarboxamide: coordination, vitamin B$_{12}$, 498
dissociation, 494
interaction with corrin ring, 353
nmr Spectrum (13C), 477
5'-nucleoside, 154
pk values, 561
proteination, nmr spectroscopy, 494
stereic interaction with corrin ring, epr spectrum, 448
thermodynamics, ligand exchange, table, 496
trans-off, nmr spectroscopy, 488
vitamin B$_{12}$ coenzyme, nmr spectrum, 486, 470
vitamin B$_{12}$, total synthesis, 198
1,2-Dihydroxyethylamine(II) chloride(II) nitrile, epr spectrum, 448
5,6-Dimethylbenzimidazol-2'-nucleotide, reaction with cob(II)amidoguanosinodiphosphate, 153
threo-3,3-Dimethylbutyl(2,5,8)-2,5-difluoro-methyl sulfonate, reaction with cobalt(II) complexes, 260
9',9'-Dimethylbiladiene(III) complexes, heavy metal allylation, 527
Dimethylymercury(II), methylcobalamin, 526
Dimethylsulphide complexes, cobaloximes, 248
Diol dehydrase:
1,2-Dihydroxyethyl radical, vitamin B$_{12}$ coenzyme, 571
enzymic reaction, bridged cation, 546, 555
epr spectroscopy, enzymic reaction, 558
inhibition, nitrous oxide, 373
MO-calculations, 557
model systems, vitamin B$_{12}$ coenzyme, 523, 571
radical intermediates, 558
reaction pathways, cis-cis complexes, 555, 559, 575
vitamin B$_{12}$ coenzyme, enzymatic reaction, 529
1,2-Dioisocarbonyl radicals, radical rearrangements to aldehydes, 573
1,3-Dioxa-2-cyclopentylmethylcobaloxime, preparation, 292
1,3-Dioxa-2-cyclopentylmethylcobalamin, reaction with acid, 315
Dissymmetry, cobalt-carbon bond insertion, 512
Dipolar coupling, epr spectroscopy, 462
Direct methods, X-ray structure, 97
Disproportionation:
 alkylation, CoTPP, 279
 cobalt complexes, 253
 cobalt-carbon bond, 507
 cobalt-carbon bond cleavage, corrin ring, 65
 corrin, 207
 vitamin B12, protein role, 372
 DMBC, see Vitamin B12 coenzyme
Effect of axial ligands:
 alkyl ligands, pK values, 356
 alkyl ligands, table, electronic spectrum, 356
 7-band, electronic spectrum, 411
 cobalt(I) complexes, nucleophilicity, 250,252
Effect on corrin ring folding, benzimidazole, 59
Effect on physical properties, corrin-alkyl ligands, 356
Electrochemical oxidation:
 alkylcobaloximes, 515
 methylcobalamin, 517
 see also Redox chemistry, Redox potential
Electrochemical reduction:
 cobalt complexes, 254
 methylcobalamin, 318
 methylcobinamide, 318
Electrocyclic ring-opening, enzymic reaction, vitamin B12 coenzyme, 576
Electron density map, X-ray structure, 97
Electron donor strength, ligand redox potential, cobalt(I) complexes, 504
Electronegativity, cobalt complexes, 490
Electronic spectrum:
 alkylcobaloximes, 406
 aminocobalamin, 411
 aquocobalamin, 417
 aquocyanocobinamide, 408, 413
 aquohydroxocobinamide, 413
 axial ligands, 409, 412
 azidocobalamin, 411, 417
 calculations, vitamin B12 coenzyme, 398
 carbonylmethylcyanocobalamin, 413
 charge-transfer, cobaloximes, 394, 403, 419
 10-chloroacetylaminocobalamin B12, 215
 cobalt(I) complexes, 419
 cobalt(I)aminocobyl, 418
 cobalamin:
 bound to human intrinsic factor, table, 417
 correlation between nmr and, 418
 cobaloximes, 419
 cobalt-carbon bond, charge-transfer, 404
 cobalt-15-acy anhydrase, 7,12,12-hexamethylcorrin, 424
 cobalt-15-acy anhydrase, 7,12,12,17,19-penta-methylcorrin, 424
 cobalt-15-acy anhydrase, 7,12,12-ketamethyl-1-mercaptopropionylcobalamin, 424
 cobalt-15-acy anhydrase, 7,12,12,17,19-penta-methylcorrin, 424
 cobalt-15-acy anhydrase, 7,12,12,17,19-penta-methylcorrin, 424
Electronic spectrum (Cont’d)
cobalt 7,7,12,12-tetramethylcorrin, 424
cobalt(II) complexes, 262
 cobalt(III) complexes, 394
cobalt-free corrinoid, 413
cobinamides, α, β-isomers, 413, table, 415
cobalt(II) complexes, 394
cobalt(III) complexes, 401
cobinamides, α, β-isomers, 413, table, 415
cobryic acid, 415
cyclohexylcobalamin, 255
cysteinylcobalamin, 411
dicyanocobinamide, 343, 408, 424
dicyanocobinamide, 395, 408, 424
effect of axial ligands, table, 356
effect of axial ligands, table, 7-band, 411
enzyme-substrate complex, 375
ethylycobalamin, 408
ethylicobinamide, 408
ethylicobinamide, 413
ethylycobalamin, 411, 415
Factor I, 130
hydridocobalamin, 365
hydroxyethylcyanocobalamin, 413
imidazolecobalamin, 411
iodocobalamin, 411
isopropylcyanocobalamin, 413
isopropylcyanocobalamin, 413
isopropylcobinamide, 255, 408
imidazolecobinamide, 411
LCAO-MO, 396
metal-free corrin, 395
metalcorrins, 424
me hylcobalamin, 408, 415
me hylcobinamide, 343, 408
methylycyanocobalamin, 413
me hylisocyanatocobalamin, 411
modification of corrin ring, 415
neocorrins, 222
neopentacontaenic series, 409
nickel 15-cyano-7,7,12,12,19-pentamethyl-
corrin, 424
nickel 7,7,12,12,19-pentamethylcorrin, 424
10-nitrosocobalamin, 217
octamethyl ester, trimethylated
isobacteriochlorins, 132
pH:
cobalt-free corrin, 401
descobalocobamide, 211
phenolatocobalamin, 404
polarization effects, corrin, 402
n-propylycyanocobalamin, 413
pyridinato cobalamin, 411
selenocyanatocobalamin, 411
sinoxyhydrochlorin, octamethyl ester, 123
solvent effects, 409
spin forbidden transitions, 406
sulfocobalamin, 347, 411
sulfomethylycyanocobalamin, 413
temperature effects, 407
temperature variation: alkylicobinamides, 348
dicyanocobinamide, 348
isopropylcyanocobinamide, 348
methylcobinamide, 348
tetracarboxylic acid, 415
theoretical considerations, 396
thioyanatocobalamin, 411
 trifluoroethylcyanocobalamin, 413
vibrational components, 403
vinylicobalamin, 346, 350, 415
vinylicobinamide, 408
vinylycyanocobalamin, 413
vitamin B₁₂
bound to intrinsic factor, 414
chlorinonion, 215
hexacarboxylic acid, 417
lactam, 417
lactone, 417
pentacarboxylic acid, 417
solvent effects, 207, table, 343, 393-430
vitamin B₁₂ coenzyme:
base-on, off, 357
flash photolysis, 299
photolysis, 296
solvent effects, 343, table, 350, 408, 410
vitamin B₁₂ base, 41, 8
vitamin B₁₂ coenzyme:
base-on, off, 357
flash photolysis, 299
photolysis, 296
solvent effects, 343, table, 350, 408, 410
vitamin B₁₂ base, 41, 8
vitamin B₁₂ coenzyme:
base-on, off, 357
flash photolysis, 299
photolysis, 296
solvent effects, 343, table, 350, 408, 410
vitamin B₁₂ base, 41, 8
vitamin B₁₂ coenzyme:
base-on, off, 357
flash photolysis, 299
photolysis, 296
solvent effects, 343, table, 350, 408, 410
vitamin B₁₂ base, 41, 8
vitamin B₁₂ coenzyme:
base-on, off, 357
flash photolysis, 299
photolysis, 296
solvent effects, 343, table, 350, 408, 410
vitamin B₁₂ base, 41, 8
vitamin B₁₂ coenzyme:
base-on, off, 357
flash photolysis, 299
photolysis, 296
solvent effects, 343, table, 350, 408, 410
vitamin B₁₂ base, 41, 8
vitamin B₁₂ coenzyme:
base-on, off, 357
flash photolysis, 299
photolysis, 296
solvent effects, 343, table, 350, 408, 410
vitamin B₁₂ base, 41, 8
vitamin B₁₂ coenzyme:
base-on, off, 357
flash photolysis, 299
photolysis, 296
solvent effects, 343, table, 350, 408, 410
vitamin B₁₂ base, 41, 8
vitamin B₁₂ coenzyme:
base-on, off, 357
flash photolysis, 299
photolysis, 296
solvent effects, 343, table, 350, 408, 410
vitamin B₁₂ base, 41, 8
vitamin B₁₂ coenzyme:
base-on, off, 357
flash photolysis, 299
photolysis, 296
solvent effects, 343, table, 350, 408, 410
vitamin B₁₂ base, 41, 8
vitamin B₁₂ coenzyme:
base-on, off, 357
flash photolysis, 299
photolysis, 296
solvent effects, 343, table, 350, 408, 410
vitamin B₁₂ base, 41, 8
vitamin B₁₂ coenzyme:
base-on, off, 357
flash photolysis, 299
photolysis, 296
solvent effects, 343, table, 350, 408, 410
vitamin B₁₂ base, 41, 8
vitamin B₁₂ coenzyme:
base-on, off, 357
flash photolysis, 299
photolysis, 296
solvent effects, 343, table, 350, 408, 410
vitamin B₁₂ base, 41, 8
vitamin B₁₂ coenzyme:
base-on, off, 357
flash photolysis, 299
photolysis, 296
solvent effects, 343, table, 350, 408, 410
vitamin B₁₂ base, 41, 8
Electronic structure (Cont’d)
electronic spectrum, conformations, 343

Electron transfer:
bi(salicylaldehyde)hydrazide cobalt(II)(methylimidazole),
halogen abstraction, 510
cobalt(II) complexes, alkylation, 259
mechanism, cobalt complexes reductive amination, 270
vitamin B₁₂ coenzyme, enzymic reactions, 547
migration of group X, 555

Electrophilic, cobalt-carbon bond, reaction with, 312-317

Electrophilic attack, MO-calculations, vitamin B₁₂, 212

Electrophilic decomposition, alkylcobalamins acid catalyzed, 527
Electrophilic substitution: corrin, 345
MO-calculations, corrin, 212

Electrophoresis, corrin, 249

Elimination:
alkylcobaloximes, 364
cobalt-carbon bond, 362
cobalt-carbon bond angles, 369
reversibility, 367
thermolysis, cobalt-carbon bond, 304
vitamin B₁₂, isopropylcobalamin, 364
ENOR, vitamin B₁₂, 441, 442

Enzymes, cobalt-carbon bond cleavage, 551

Energies, cobalt-carbon bond, 554
Enhancers, epr spectroscopy, 447

Enols, reaction with cobalt(III) complexes, 279

Enzyme bound vitamin B₁₂, coenzyme, 554
Enzymes:
corrin biosynthetic
broken cell, 116
cell free, 116

Enzymic formation:
vitamin B₁₂, 157
vitamin B₁₂, 158

Enzymic reaction:
active site thiol, vitamin B₁₂, coenzyme, 555
aminomutases, 546
2-amino-1-propanol, radical intermediates, 450

γ-bonded organocorrinoids, vitamin B₁₂
coenzyme, 547
bridged cation, diol dehydrase, 555
cobalt-carbon bond cleavage:
homolysis, 456
vitamin B₁₂ coenzyme, 507, 547
cobalt role, vitamin B₁₂ coenzyme, 555
cobalt(II) substrate radical separation,
vitamin B₁₂ coenzyme, 452
5'-deoxyadenosyl radical, vitamin B₁₂
coenzyme, 564
dihydroxyalkylcobalt complexes, models for, 572
diol dehydrase:
epr spectroscopy, 558
vitamin B₁₂ coenzyme, 529
vitamin B₁₂, substrate radical separation,
 mechanism, 453, 546

Electron transfer, vitamin B₁₂ coenzyme,
547
epr spectroscopy:
organic radicals, 559
radical doublet intermediates, 450

Electrophilic cobalt-carbon bond reaction with,
312-317

Electrophilic decomposition, alkyl-
cobalamins acid catalyzed, 527

Electrophilic substitution: corrin, 345
MO-calculations, corrin, 212

Electrophilic attack, MO-calculations, vitamin B₁₂, 212

Electrophilic decomposition, alkyl-
cobalamins acid catalyzed, 527
Electrophilic substitution: corrin, 345
MO-calculations, corrin, 212

Electrophoresis, corrin, 249

Elimination:
alkylcobaloximes, 364
cobalt-carbon bond, 362
cobalt-carbon bond angles, 369
reversibility, 367
thermolysis, cobalt-carbon bond, 304
vitamin B₁₂, isopropylcobalamin, 364
ENOR, vitamin B₁₂, 441, 442

Enzymes, cobalt-carbon bond cleavage, 551

Energies, cobalt-carbon bond, 554
Enhancers, epr spectroscopy, 447

Enols, reaction with cobalt(III) complexes, 279

Enzyme bound vitamin B₁₂, coenzyme, 554
Enzymes:
corrin biosynthetic
broken cell, 116
cell free, 116

Enzymic formation:
vitamin B₁₂, 157
vitamin B₁₂, 158

Enzymic reaction:
active site thiol, vitamin B₁₂, coenzyme, 555
aminomutases, 546
2-amino-1-propanol, radical intermediates, 450

γ-bonded organocorrinoids, vitamin B₁₂
coenzyme, 547
bridged cation, diol dehydrase, 555
cobalt-carbon bond cleavage:
homolysis, 456
vitamin B₁₂ coenzyme, 507, 547
cobalt role, vitamin B₁₂ coenzyme, 555
cobalt(II) substrate radical separation,
vitamin B₁₂ coenzyme, 452
5'-deoxyadenosyl radical, vitamin B₁₂
coenzyme, 564
dihydroxyalkylcobalt complexes, models for, 572
diol dehydrase:
epr spectroscopy, 558
vitamin B₁₂ coenzyme, 529
vitamin B₁₂, substrate radical separation,
 mechanism, 453, 546

Electron transfer, vitamin B₁₂ coenzyme,
547
epr spectroscopy:
organic radicals, 559
radical doublet intermediates, 450
Enzymic reaction (Cont’d)
protein role, vitamin B₁₂ coenzyme, 555
radical doublet intermediates, vitamin B₁₂
coenzyme, 450
rapid reaction intermediate, vitamin B₁₂
coenzyme, 455
reaction pathways, vitamin B₁₂ coenzyme,
555
reversibility, vitamin B₁₂ coenzyme, 545
ribonucleotide reductase:
epr spectroscopy, 508
epr spectrum, 451
Vitamin B₁₂ coenzyme, 529
table, vitamin B₁₂ coenzyme, 546
theoretical studies, vitamin B₁₂ coenzyme,
557
vitamin B₁₂ as intermediate, vitamin B₁₂
coenzyme, 530
vitamin B₁₂ intermediate, 381
organic radical interaction, epr spectrum,
450
Enzymic reduction, aquocobalamin, 157
Enzymic role, olefin p-complexes, vitamin
B₁₂ coenzyme, 534
Epicoalamin, see Neovitamin B₁₂
8-Epicoalamin, structure, 225
13-Epicoalamin, structure, 224
3-Epiconormoids, 224. See also Neocorrinoids
8-Epiconormoids, 224
biological activity, neocorrinoids, 225
circular dichroism, neocorrinoids, 225
see also Neocorrinoids
13-Epiconormoids, 224. Seealso
Neocorrinoids
Epimerization:
equilibrium constants, corrin, table, 222
mechanism, corrin, 224
MO calculations, corrin, 220
neocorrinoids, trifluoroacetic acid, 220,
222
trifluoroacetic acid, corrin, 222
Epimers:
corrin, 210
Vitamin B₁₂, 210
3-Episorhoenochlorin:
absolute configuration, 130
identity with Factor IIa, 129
structure, 129
Episulfides, vitamin B₁₂ total synthesis,
185
Epoxides, reaction with cobalt(II) complexes,
256
Epr signals during catalysis, vitamin B₁₂
coenzyme, 332
Epr spectroscopy:
alkylcobaloximes, photolysis, 524
angular anomalies, cob(II)iminidates,
443
anisotropic hyperfine interaction,
cob(II)iminidates, 443
carbon-skeleton, 381
cob(II)iminidates, fifth axial ligands, 444
cobalamins, 433-442
cobalt(II) complexes, 433-442
dipolar coupling, 452
enhancers, 447
enzymic reaction:
diol dehydrase, 558
ethanolamine ammonia-lyase, 558
ribonucleotide reductase, 431-462,
558
function of fifth ligand, table, cob(II)inamides,
444
hyperfine splitting, 436
isomerase reactions, 381
isotropic exchange, 452
monoclinic model, vitamin B₁₂, 440
organic radicals, enzymic reaction,
559
powder samples, vitamin B₁₂, 439,
442
principal axes, vitamin B₁₂, 451
radical doublet intermediates, enzymic
reaction, 450
rapid reaction intermediate, epr
spectrum, 455
single crystals, vitamin B₁₂, 442
theory, 435
vitamin B₁₂ coenzyme, enzymic reaction,
449-458, 558
Epr spectrum:
alkylcobaloximes, cation radicals, 517
aquocob(II)iminid, 448
cob(II)iminidates, oxygenation, 434, 458
cobalt(II) complexes, organic radical
interaction, 450
cobaminides, steric interactions, 448
5,6-dimethylbenzimidazole, steric
interaction with corrin ring,
448
5,6-dimethylbenzimidazolecob(II)iminid, 448
enzymic reaction:
ribonucleotide reductase, 451
Epr spectrum (Cont’d)

vitamin B_{12}, organic radical interaction, 450

Epr spectroscopy, rapid reaction intermediate, 455

high pH, table, cob(II)imides, 447

nitroalkylcorrins, photolysis, 405

oxygenated vitamin B_{12}, 458

ribonucleotide reductase, rapid reaction intermediate, 455

simulation:

azidocob(II)imamide, 445

histidine cob(II)amide, 445

simulation, cob(II)imides, table, 446

vitamin B_{12} coenzyme, enzymic reaction: 450

^{13}C intermediates, 450

^{2}H intermediates, 450

vitamin B_{12}:

base-on, off, 299

oxygenation, 458

stimic interactions, 434, 439, 442, 448

Equilibria:

axial ligands, 345

cobalt-carbon bond, dissociation energy determination, 507

5- and 6-coordinate, table, cobinamides, 350

Equilibrium constants:

aquocobalamin, ligand substitution, 337

corrin, epimerization, 220

hydridocobalt complexes, cobalt(I) complexes, 506

Equilibrium data, cob(II)aloximes, 504

Equilibrium determination, 1-phenylethyl-(pyridine)cobaloxime, bond dissociation energy, 508

Esr, see Epr spectroscopy; Epr spectrum; Epr signals during catalysis, vitamin B_{12} coenzyme

Ester ammonolysis, vitamin B12 total synthesis, 192

Esterification, basic conditions, vitamin B_{12} total synthesis, diazomethane, 193

Ethane, methylocobalamin photolysis, 300

Ethane-1,2-diol, see Ethylene glycol

Ethanolamine, vitamin B_{12} coenzyme photolysis, acetaldehyde, 298, 328

Ethanolamine ammonia-lyase: enzymic reaction, 546

Epr spectroscopy, enzymic reaction, 558

Epr spectrum, 450

inhibition, nitrous oxide, 373

MO-calculations, 557

model systems, vitamin B_{12} coenzyme, 571

clefin π-complexes, vitamin B_{12} coenzyme, 575

radical cations, vitamin B_{12} coenzyme, 573

radical intermediates, 556

rapid reaction intermediate, 455

reaction pathways, vitamin B_{12} coenzyme, 555, 573

vitamin B_{12} coenzyme, enzymic reaction, 529

vitamin B_{12}-substrate radical separation:

mechanism, enzymic reaction, 455

table, 454

1,N^2-Ethenadenosine, vitamin B_{12} coenzyme fluorescent analogs, 300

E-hemeimine, reaction with cobalt(I) complexes, 257

1,N^2-Ethenoadenosylcobalamin, preparation, 267

Ethoxycarbonylcobalamin, alkaline decomposition, 360

2-Ethoxethylamine, vitamin B_{12} coenzyme photolysis, acetaldehyde, 298

β-Ethoxethyl(2-pyridine)cobaloxime oxime, ethylene, a cld decomposition, 313

Ethylcobalamin:

electronic spectrum, 408

nrr spectrum, 468, 474

photolysis, 302

solution thermolysis, 304

spin-lattice relaxation times, 492

Ethylcobinamide:

deuteration, 345

electronic spectrum, 408

Ethylcyanocobalamin, electronic spectrum, 413

Ethylene:

acid decomposition:

β-ethoxethyl(2-pyridine)cobaloxime, 313

methoxycyanocobalamin, 313

hydroxyethylcobalamin, acid decomposition ion, 313

Ethylene glycol:

acetaldehyde, methyl(aquo)cobaloxime photolysis, 571

pulse radiolysis, acetaldehyde, 574
Ethylene glycol (Cont'd)
vitamin B$_{12}$ coenzyme, photolysis, 298, 326
Ethyl vinyl ether, reaction with cobalt(III) complexes, 281
Ethylnylcobalamin, electronic spectrum, 411, 415
Euglena gracilis, corrin, biosynthesis, 117
Eukaryotes:
cobalt-carbon bond, biosynthesis, 155-163
vitamin B$_{12}$ coenzyme, biosynthesis, 155-161
1H/$^{1}^{3}$H exchange:
corrin ring, nmr spectrum, 469
nmr spectrum, vitamin B$_{12}$ coenzyme, 468, 469
Extraction, corrins by phenol, 249
Factor A:
nomenclature, 17
X-ray crystallographic data, 92
Factor I:
biosynthesis, 131
electronic spectrum, 130
incorporation into cobyrinic acid, 131
isolation from C. tetanomorphum, 130
isolation from P. shermanii, 130
reduced form incorporation into:
cobyrinic acid, 131
tetrahydrocorrin, 131
structure, 130, 131
Factor II, see Sirohydrochlorin
Factor IIa:
3-episirohydrochlorin, identity with, 129
see also 3-Episirohydrochlorin
Factor III:
5-methoxybenzimidazole, 471
nmr spectrum, 471, 472
Factor Vla, see Cobyrinic acid
FAD, cobalamin reduction, 157
Ferredoxin:
corrin reduction, 254
desamination, vitamin B$_{12}$, 163
Fifth axial ligands, epr parameters, table, 444
First crystalization, vitamin B$_{12}$, 3
Five coordinate:
cobalt(III) complexes, stable, 506
decomposition, alkyl cobalamins, 369
Flash photolysis:
alkylcobalt complexes, 525
electronic spectrum, vitamin B$_{12}$ co-
enzyme, 299
methylcobalamin, 300, 335, 363, 525, 553
methylcobaloxime, 405
methylcobalt complexes, 525
vitamin B$_{12}$ coenzyme, 376
Fluorescence spectrum:
cobalt-free corrin, 402, 422
vitamin B$_{12}$, 426
Fluorescent analogs:
2,6-diaminobulorine, vitamin B$_{12}$ coenzyme, 300
formycin, vitamin B$_{12}$ coenzyme, 300
1,N6 -ethenadenosine, vitamin B$_{12}$ coenzyme, 300
vitamin B$_{12}$ coenzyme, 267, 285
Fluxionality, cobalamins, nmr spectroscopy, 490
FMN, cobalamin reduction, 157
FMNH$_{2}$, methionine biosynthesis, 162
Folding, corrin derivatives, 59
Formic acid, reaction with cyanide, 299
Formylmethylcobalamin, preparation, 283, 315
reduced form incorporation into:
tetrahydrochlorin, 131
structure, 130, 131
Factor IIa, see Sirohydrochlorin
Factor IIa:
3-episirohydrochlorin, identity with, 129
see also 3-Episirohydrochlorin
Factor III:
5-methoxybenzimidazole, 471
nmr spectrum, 471, 472
Factor Vla, see Cobyrinic acid
FAD, cobalamin reduction, 157
Ferredoxin:
corrin reduction, 254
desamination, vitamin B$_{12}$, 163
Fifth axial ligands, epr parameters, table, 444
First crystalization, vitamin B$_{12}$, 3
Five coordinate:
cobalt(III) complexes, stable, 506
decomposition, alkyl cobalamins, 369
Flash photolysis:
alkylcobalt complexes, 525
electronic spectrum, vitamin B$_{12}$ co-
enzyme, 299
methylcobalamin, 300, 335, 363, 525, 553
methylcobaloxime, 405
methylcobalt complexes, 525
vitamin B$_{12}$ coenzyme, 376
Fluorescence spectrum:
cobalt-free corrin, 402, 422
vitamin B$_{12}$, 426
Fluorescent analogs:
2,6-diaminobulorine, vitamin B$_{12}$ coenzyme, 300
formycin, vitamin B$_{12}$ coenzyme, 300
1,N6 -ethenadenosine, vitamin B$_{12}$ coenzyme, 300
vitamin B$_{12}$ coenzyme, 267, 285
Fluxionality, cobalamins, nmr spectroscopy, 490
FMN, cobalamin reduction, 157
FMNH$_{2}$, methionine biosynthesis, 162
Folding, corrin derivatives, 59
Formic acid, reaction with cyanide, 299
Formylmethylcobalamin, preparation, 283, 315
reduced form incorporation into:
tetrahydrochlorin, 131
structure, 130, 131
Factor IIa, see Sirohydrochlorin
Factor IIa:
3-episirohydrochlorin, identity with, 129
see also 3-Episirohydrochlorin
Factor III:
5-methoxybenzimidazole, 471
nmr spectrum, 471, 472
Factor Vla, see Cobyrinic acid
FAD, cobalamin reduction, 157
Ferredoxin:
corrin reduction, 254
desamination, vitamin B$_{12}$, 163
Fifth axial ligands, epr parameters, table, 444
First crystalization, vitamin B$_{12}$, 3
Five coordinate:
cobalt(III) complexes, stable, 506
decomposition, alkyl cobalamins, 369
Flash photolysis:
alkylcobalt complexes, 525
electronic spectrum, vitamin B$_{12}$ co-
enzyme, 299
methylcobalamin, 300, 335, 363, 525, 553
methylcobaloxime, 405
methylcobalt complexes, 525
vitamin B$_{12}$ coenzyme, 376
Fluorescence spectrum:
cobalt-free corrin, 402, 422
vitamin B$_{12}$, 426
Fluorescent analogs:
2,6-diaminobulorine, vitamin B$_{12}$ coenzyme, 300
formycin, vitamin B$_{12}$ coenzyme, 300
1,N6 -ethenadenosine, vitamin B$_{12}$ coenzyme, 300
vitamin B$_{12}$ coenzyme, 267, 285
Fluxionality, cobalamins, nmr spectroscopy, 490
FMN, cobalamin reduction, 157
FMNH$_{2}$, methionine biosynthesis, 162
Folding, corrin derivatives, 59
Formic acid, reaction with cyanide, 299
Formylmethylcobalamin, preparation, 283, 315
reduced form incorporation into:
tetrahydrochlorin, 131
structure, 130, 131
Factor IIa, see Sirohydrochlorin
Factor IIa:
3-episirohydrochlorin, identity with, 129
see also 3-Episirohydrochlorin
Factor III:
5-methoxybenzimidazole, 471
nmr spectrum, 471, 472
Factor Vla, see Cobyrinic acid
FAD, cobalamin reduction, 157
Ferredoxin:
corrin reduction, 254
desamination, vitamin B$_{12}$, 163
Fifth axial ligands, epr parameters, table, 444
First crystalization, vitamin B$_{12}$, 3
Five coordinate:
cobalt(III) complexes, stable, 506
decomposition, alkyl cobalamins, 369
Flash photolysis:
alkylcobalt complexes, 525
electronic spectrum, vitamin B$_{12}$ co-
enzyme, 299
methylcobalamin, 300, 335, 363, 525, 553
methylcobaloxime, 405
methylcobalt complexes, 525
vitamin B$_{12}$ coenzyme, 376
Fluorescence spectrum:
cobalt-free corrin, 402, 422
vitamin B$_{12}$, 426
Fluorescent analogs:
2,6-diaminobulorine, vitamin B$_{12}$ coenzyme, 300
formycin, vitamin B$_{12}$ coenzyme, 300
1,N6 -ethenadenosine, vitamin B$_{12}$ coenzyme, 300
vitamin B$_{12}$ coenzyme, 267, 285
Fluxionality, cobalamins, nmr spectroscopy, 490
FMN, cobalamin reduction, 157
FMNH$_{2}$, methionine biosynthesis, 162
Folding, corrin derivatives, 59
Formic acid, reaction with cyanide, 299
Formylmethylcobalamin, preparation, 283, 315
reduced form incorporation into:
tetrahydrochlorin, 131
structure, 130, 131
Factor IIa, see Sirohydrochlorin
Factor IIa:
3-episirohydrochlorin, identity with, 129
see also 3-Episirohydrochlorin
Factor III:
5-methoxybenzimidazole, 471
nmr spectrum, 471, 472
Factor Vla, see Cobyrinic acid
FAD, cobalamin reduction, 157
Ferredoxin:
corrin reduction, 254
desamination, vitamin B$_{12}$, 163
Fifth axial ligands, epr parameters, table, 444
First crystalization, vitamin B$_{12}$, 3
Five coordinate:
cobalt(III) complexes, stable, 506
decomposition, alkyl cobalamins, 369
Flash photolysis:
alkylcobalt complexes, 525
electronic spectrum, vitamin B$_{12}$ co-
enzyme, 299
methylcobalamin, 300, 335, 363, 525, 553
methylcobaloxime, 405
methylcobalt complexes, 525
vitamin B$_{12}$ coenzyme, 376
Fluorescence spectrum:
cobalt-free corrin, 402, 422
vitamin B$_{12}$, 426
Fluorescence specta:
Glutamate mutase (Cont'd)
glycinyl radical, vitamin B$_{12}$ coenzyme, 571
model systems, vitamin B$_{12}$ coenzyme,
olefin m-complexes, vitamin B$_{12}$ coenzyme,
radical intermediates, 556
reac ion pathways vitamin B$_{12}$ coenzyme,
vitamin B$_{12}$ coenzyme, enzymic reaction, 529
L-Glutamic acid, 328
Glutathione, nucleotide loop biosynthesis,
cofactor, 152
Glyceraldehyde, photolysis, dihydroxy-
propylcobalamin, 302
Glyceric acid, photolysis dihydroxy-
propylcobalamin, 302
Glycerol dehydrase, enzymic reac

tion, 546
Glycerol photolysis, dihydroxypropyl-
cobalamin, 302, 328
Glycinyl radical, vitamin B$_{12}$ coenzyme,
glutamate mutase, 571
N-Glycosides:
biosynthesis, enzyme isolation, 153
cobalamins, configurations, 153
Glyglycobalamin, reac ion with, hydroxy-
lamine, 312
Gold(I), alkylcobalt complexes, alkyla-
tion, 527
Grignard reagent:
cobalt(II) complexes, alkylation, 277,
517
phenyl(pyridine)cobaloxime, preparation,
278
Group participation effects, f-amide cleavage,
235
Guanosine diphosphate:
cobinamide phosphate, addition of, 151
cobinamides nucleotide loop, biosyn thesis,
152
H$_2$Pt, reductive cleavage, methyl-
cobalamin, 317
Hagemann's ester, vitamin B$_{12}$ total syn thesis,
184
Halobenzene synthetase, 163
Halogenation:
cis-effect, vitamin B$_{12}$, 216
conm, 204, 215
lactam formation, 226
lactone formation, 226
me hylcobalamin, 216
sulfonatocobalamin, 216
vitamin B$_{12}$, 226
VitaminB$_{12}$ coenzyme, 216
Halogen cleavage:
alkylicobaloximes, 317
benzylcobaloxime, 317
isopropylcobaloxime, 317
stereochirality, cobalt-carbon bond, 317
Halogens, cobalt-carbon bond cleavage,
516,526
Halometabolobaloximes, reaction with
alkali, 308
Halomethiooobalt porphyrins, diazomethane,
preparation, 280
Heavy metal methylation, methylcobalamin,
528
Helicity:
conm, 209
vitamin B$_{12}$, 209
Heptamethylcob yrinate:
coordination, l-(2-trifluoromethylphenyl)-
imidazole, 495
iodide complex, structure, 72
reaction with methylmagnesium iodide,
278
see also Heptamethylcobyrinic acid
Heptamethylcobyrinic acid:
125Cnry, 112
degradation, 113
ozonolysis, 115
structure, 114
Heptamethyl diocyno-5,15-bisnorcobyrinate:
preparation, 239
vitamin B$_{12}$, conversion to, 239
Heptamethyl diocyno-10-bromocobyrinate,
ozonolysis, 218
Heptamethyl diocynoobocrinobcrinate:
preparation, 236
reduction to heptanol, 226, 237
vitamin B$_{12}$, conversion to, 236
Heterolytic cleavage:
alkylicobalamin, 305-319
alkylicobaloximes, 305-319
cobalt-carbon bond, vitamin B$_{12}$ coenzyme,
305-319,548
Hexacarboxylic acid (vitamin B₁₂): bond angles, tables, 45-53
cell dimensions, 92
chemical formula, 92
deuteriation, 212
electronic spectrum, 417
folding, 60
space group, 92
structure, 28, 204
torsion around A-D junction, 57
X-ray crystallographic data, 45-53
X-ray diffraction data, 27
X-ray structure, 31, 32
see also Vitamin B₁₂
Hexachloroiridate, oxidation, alkyl-
obaloximes, 515, table, 516
5,7,7,12,14,14-Hexamethyl-1,4,8,11-
tetraazacyclotetradeca-4,11-diene-
cobalt: alkyl complexes, 271
structure, 574
vitamin B₁₂ coenzyme, model systems,
574
High pH cob(I)inamides, epr spectrum,
447
High pressure liquid chromatography,
vitamin B₁₂ total synthesis, 190
Histidine cob(I)amide, epr spectrum
simulation, 445
History, vitamin B₁₂, 1
Homocysteine:
S-adenosylhomocysteine, from vitamin
B₁₂ coenzyme and, 298
methylation, methylcobalamin, 528
methylcobaloxime, me hylation, 529
Homolytic cleavage:
cobalt-carbon bond:
tion enthalpy, 511
vitamin B₁₂ coenzyme, 296, 362, 548
5-coordinate, 371
thermolysis, neopentylcobalamin, 364
Hydridocobalamin:
bond dissociation energy, 507
electronic spectrum, 365
pKa values, 506
preparation, 253, 365
secondary alkylcorrinoids, preparation,
552
vitamin B₁₂ coenzyme, 549
Hydridocobaloxime, 252
Hydrido(pyridine)cobaloxime, bond
 dissociation energy, 507
Hydrido(nez-butylphosphine)cobaloxime:
bond dissociation energy, 507
olefin addition, radical intermediates,
518
pKa values, 506
preparation, 253
Hydridocobalt complexes:
acidity, 253,506
addition to olefins, mechanism, 265
bond dissociation energy, 506
cobalt(I) complexes, equilibrium, 506
Hydridopentacyanocobalt:
acidity, 253
addition to olefins, mechanism, 263
bond dissociation energy, 507
olefin addition, free radical intermediates,
518
pKa values, 506
Hydrogen abstraction:
S'-deoxyadenosine, 554
vitamin B₁₂ coenzyme enzymic reaction,
554
Hydrogen cyanide, vitamin B₁₂ coenzyme
reaction with, 306
Hydrogen exchange:
with solvent, ribonucleotide reductase,
449
vitamin B₁₂ coenzyme enzymic reaction,
449
Hydrogen perox ide, corrin ox idation, 218
Hydrogen reduction, cobaloximes, cobalt
complexes, 252
Hydrolysis:
acid, amide groups (corrin periphery),
33,230,234
alkyl(pyridine)cobaloximes, cation
exchange resin, 249
Hydrophobic pocket, vitamin B₁₂ coenzyme.
41
Hydroxocobalamin:
alkylation, vinyl ethers, 281
electronic spectrum, 404, 417
Hydroxocobalamin (Cont'd)
initial isolation, 12
nmr spectrum, 468, 474
nomenclature, 17
see also Aquocobalamin
Hydroxyalkylcobaloximes, reaction with acid, 313
2-Hydroxyalkylcobaloximes, preparation, reaction ions, 284
β-Hydroxyalkylcobaloximes, reaction with alkali, 310
α-Hydroxyalkylcobalt complexes, preparation, pulse readolysis, 273
4-Hydroxy-n-butyrcobaloxime, reaction with acid, 314
10-Hydroxycofactor, 217
trans-2-Hydroxyethylcylohexylcobaloxime, reaction with alkali, 311
β-Hydroxyhexylcobaloxime, decomposition in acid, 313
Hydroxyethylcobalamin: acid decomposition, ethylene, 313
reaction with alkali, 311
spin-lattice relaxation times, 492
2-Hydroxyhycobaloximes: acid catalyzed decomposition, 518
olefin m-complexes, acid catalysis, 575
reaction with alkali, cobalt(I)aloxime, 310
Hydroxyethylcobinamide, reaction with alkali, 311
Hydroxyethylcyanocobalamin, electronic spectrum, 413
2-Hydroxyethyl vinyl ether, reaction with cobalt(III) complexes, 282
β-Hydroxyisopropylcobaloxime, reaction with hydroxide, 310
β-Hydroxyisopropyl(pyridine)cobaloxime: acid catalyzed rearrangement to 0-hydroxy-
-n-propylpyridinatocobaloxime, 314
photolysis, 302
Hydroxyamine: acetylcofactor, reaction with, 312
acetylcycofactor, reaction with, 312
glycycofactor, reaction with, 312
β-Hydroxypropionaldehyde, 328
β-Hydroxypropionycobaloximes, acetone, photolysis, 302
β-Hydroxy-α-propyl(pyridinic)cobaloxime, preparation, 257
3-Hydroxy-r-propyrcobaloxime, reaction with acid, 314
3-Hydroxypropylcobaloxime, reaction with hydroxide, 310
β-Hydroxy-n-propylpyridinatocobaloxime:
β-Hydroxyisopropylpyridinatocobaloxime, acid catalyzed rearrangement to, 314
reaction with acid, 314
4-Hydroxy-2,2,6,6-tetramethylpiperidine-
N-oxidecobamide coenzyme, preparation, 267
Hyperfine splitting, epr spectroscopy, 436
Hypothetical pathways, vitamin B12 co-
enzyme, enzymic reactions, 547
Imidazole, coordination to alkylcorrins, 358
Imidazolecobalamin, electronic spectrum, 411
Incorporation into:
C tetanomorphum, sirohydrochlorin, 123
cobyrinic acid, trimethylated isobacterio-
chlorins, 132
cobyrinic acid: Factor I, 131
sirohydrochlorin, 123
corrin: 5-aminolevulinic acid, 111
methionine, 111
porphobilinogen, 111
15-cyano-1,2,2,7,7,12,12-heptamethyl-
corrin, metals, 211
vitamin B12-
cobalt, 211
copper, 211
molybdenum, 211
zinc, 211
Infrared spectrum: lactones (corrin ring), 228
vitamin B12, 215
Inhibition:
nitrous oxide: diol dehydrase, 373
acetylcobalamin, reaction with, 312
glycglycobalamin, reaction with, 312
β-Hydroxypropionaldehyde, 328
β-Hydroxypropionycobaloximes, acetone, photolysis, 302
β-Hydroxy-α-propyl(pyridinic)cobaloxime, preparation, 257
3-Hydroxy-r-propyrcobaloxime, reaction with acid, 314
3-Hydroxypropylcobaloxime, reaction with hydroxide, 310
β-Hydroxy-n-propylpyridinatocobaloxime:
β-Hydroxyisopropylpyridinatocobaloxime, acid catalyzed rearrangement to, 314
reaction with acid, 314
4-Hydroxy-2,2,6,6-tetramethylpiperidine-
N-oxidecobamide coenzyme, preparation, 267
Hyperfine splitting, epr spectroscopy, 436
Hypothetical pathways, vitamin B12 co-
enzyme, enzymic reactions, 547
Imidazole, coordination to alkylcorrins, 358
Imidazolecobalamin, electronic spectrum, 411
Incorporation into:
C tetanomorphum, sirohydrochlorin, 123
cobyrinic acid, trimethylated isobacterio-
chlorins, 132
cobyrinic acid: Factor I, 131
sirohydrochlorin, 123
corrin: 5-aminolevulinic acid, 111
methionine, 111
porphobilinogen, 111
15-cyano-1,2,2,7,7,12,12-heptamethyl-
corrin, metals, 211
vitamin B12-
cobalt, 211
copper, 211
molybdenum, 211
zinc, 211
Infrared spectrum: lactones (corrin ring), 228
vitamin B12, 215
Inhibition:
nitrous oxide: diol dehydrase, 373
acetylcobalamin, reaction with, 312
glycglycobalamin, reaction with, 312
β-Hydroxypropionaldehyde, 328
β-Hydroxypropionycobaloximes, acetone, photolysis, 302
β-Hydroxy-α-propyl(pyridinic)cobaloxime, preparation, 257
3-Hydroxy-r-propyrcobaloxime, reaction with acid, 314
3-Hydroxypropylcobaloxime, reaction with hydroxide, 310
Isomerase reactions:

- **basic schemes**, 375
- **carbonium ion mechanism**, 377
- **epr spectroscopy**, 381
- **neopentylcobalamin as model**, 375
- **proposed mechanisms**, 383
- **vitamin B12, dependent, table**, 328, 330-333

a,b-Isomers:

- **corrin, circular dichroism**, 421
- **electronic spectrum, cobinamides**, 413, 416
- **methylcobinamide, nmr spectroscopy (13C)**, 484
- **nmr spectrum, cyanoaquocobinamide**, 484
- **Isopropylaquocobaloxime, redox potential**, 516

- **Isopropylcobinamide, electronic spectrum**, 255, 408
- **b-elimination, vitamin B12r**, 364
- **pH decomposition rates**, 370
- **thermolysis:**
 - **base-on, off**, 552
 - **kinetics**, 552

Isopropylcobaloxime:

- **cobalt-carbon bond:**
 - **bond dissociation energy**, 511
 - **length**, 359
- **Ion exchange chromatography**, 249
- **Ionization energies, metals**, 331
- **Iron alkyl bond**, 331
- **7-Irradiation, frozen solution:**
 - **vitamin B12r**, 318
 - **vitamin B12, coenzyme**, 318
- **3-Isoadenosylcobalamin, acid cleavage**, 312
- **Isobacteriochlorins:**
 - **sulfite and nitrite reductases**, 122
 - **synthesis**, 122, 135
 - **see also Sirohydrochlorin; Siroctline Isolation:**
 - **C tetanomorphum, Factor I**, 130
 - **comphyrin-3, 134
 - **comphyrins**, 121, 122
 - **desulfovirin, sirohydrochlorin**, 122
 - **P. Shermai, Factor I, 130
 - **sirrohydrochlorin, P. shermai, 122
 - **trimethylated isobacteriochlorins**, 132
 - **vitamin B12r, 3, 24
 - **Isomerase reactions:**
 - **basic schemes**, 375
 - **carbonium ion mechanism**, 377
 - **epr spectroscopy**, 381
 - **neopentylcobalamin as model**, 375
 - **proposed mechanisms**, 383
 - **vitamin B12, dependent, table**, 328, 330-333
 - **a,b-Isomers:**
 - **corrin, circular dichroism**, 421
 - **electronic spectrum, cobinamides**, 413, 416
 - **methylcobinamide, nmr spectroscopy (13C)**, 484
 - **nmr spectrum, cyanoaquocobinamide**, 484
 - **Isopropylaquocobaloxime, redox potential**, 516
 - **Isopropylbis(acetylacetone)ethylenedime-n cobalt, radical scavengers, thermal decomposition**, 512
 - **Isopropylbis(salicylaldehyde-o-phenylene-diimine)cobalt, radical scavengers, thermal decomposition**, 512
 - **Isopropylcobinamide, electronic spectrum**, 255, 408
 - **b-elimination, vitamin B12r**, 364
 - **pH decomposition rates**, 370
 - **thermolysis:**
 - **base-on, off**, 552
 - **kinetics**, 552
 - **Isopropylcobaloxime:**
 - **cobalt-carbon bond:**
 - **bond dissociation energy**, 511
 - **length**, 359
 - **Ion exchange chromatography**, 249
 - **Ionization energies, metals**, 331
 - **Iron alkyl bond**, 331
 - **7-Irradiation, frozen solution:**
 - **vitamin B12r**, 318
 - **vitamin B12, coenzyme**, 318
 - **3-Isoadenosylcobalamin, acid cleavage**, 312
 - **Isobacteriochlorins:**
 - **sulfite and nitrite reductases**, 122
 - **synthesis**, 122, 135
 - **see also Sirohydrochlorin; Siroctline Isolation:**
 - **C tetanomorphum, Factor I**, 130
 - **comphyrin-3, 134
 - **comphyrins**, 121, 122
 - **desulfovirin, sirohydrochlorin**, 122
 - **P. Shermai, Factor I, 130
 - **sirrohydrochlorin, P. shermai, 122
 - **trimethylated isobacteriochlorins**, 132
 - **vitamin B12r, 3, 24
2', 3'-O-Isopropylidene-5'-deoxyuridyl-cobalamin, photolysis, 297
Isopropyl(pyridine)bis(salicylaldehyde-o-phenylenediamine)cobalt, bond

dissociation energy, 512
Isopropyl(pyridine)cobaloxime, cobalt-carbon bond, bond lengths, 505
Isopropyl[bis(hexyl)phosphine]cobaloxime: cobalt-carbon bond, bond length, 506
nmr spectrum, 506
Isopropyl(triphenylphosphine)cobaloxime: cobalt-carbon bond, bond lengths, 505
nmr spectrum, 506
Lactams (corrin-ring):
 Isopropylcobalamin thermolysis, 552
vitamin B12, 259
Kramer's doublets, 435
Kinetic isotope effect:
[1-1H2]propane-1,2-diol, vitamin B12 coenzyme, 554
vitamin B12 coenzyme, enzymic reaction, 554
Kinetics:
cobaloximes, alkylation, 259
cobalt-carbon bond:
adivlation en halpy, 511
dissociation energy determination, 511
cobalt(i) complexes, alkylation, 258
cyclopropylcarbinyl radical rearrangements, 567
Isopropylcobalamin thermolysis, 552
vitamin B12, alkylation, 259
Krammer's doublets, 435
13C-Labelled:
alcoholcobalamins, 268
cobalamins, 474
H-Labelled, vitamin B12 coenzyme, 5'-methylene group, 545
H-Labelled, vitamin B12 coenzyme, 5'-methylene group, 545
Labilization by:
protein, cobalt-carbon bond, 333
steric interactions, cobalt-carbon bond, 361
Lack of aromaticity, corrin, 204
Lactam formation:
corrin, cyclization (peripheral), 225-230, 234
halogenation, 226
methylcobalamin, 226
sulfonatocobalamin, 226
vitamin B12, 225, 234
vitamin B12 coenzyme, 226
Lactams (corrin-ring):
biological activity, 225
electronic spectrum, vitamin B12, 417
formation, mechanism, 226
c-lactam formation, 23
Lactobacillus leichmannii:
cobalamin biosynthesis, 160
ribonucleotide reductase, vitamin B12 formation, 439
Lactone formation:
corrin, cyclization (peripheral), 225-230
halogenation, 226
Iodine, 226
vitamin B12, 226
Lactones (corrin-ring):
electronic spectrum, vitamin B12, 417
infrared spectrum, 227
mechanism of forma lon, 225-230
preparation, 226
spino, 227
Lanthanide shift reagents:
corrin ring, nmr spectrum, 471, 482
nmr spectrum, carboxymethylcobalamin, 472
Laser Raman spectrum, corrin derivatives, 343
LCAO-MO, electronic spectrum, 396
Lead(II):
alkylation, trans-dimethylcobalt(iii) complexes, 527
cobalt-carbon bond, 54
α-Leucone, (R)-2,5-diaminopentanoate, 546
LiAIH4, heptamethyl dicyanocobyrinate reduction, 237
Ligand binding, vitamin B12 coenzyme model systems, 504
Ligand equilbria, vitamin B12 coenzyme steric effects, 341
Ligand exchange:
alcoholcobalamins, steric effects, 341
5, 6-dimethylbenzimidazole, thermodynamics, 496
Ligand modification, alkylcobalt complexes, 283-286
Ligand ordering, trans-effect, 346
Ligand substitution:
corrin, 330, 337
Ligand substitution (Cont’d)
equilibrium constants, table, aquo-
cobalamin, 337
Ligands, e-donor power, 333
Lithium, incorporation into 15-cyano-
1,2,7,7,12,12-heptamethyl-
corrin, 211
Longitudinal relaxation times, vitamin B₁₂,
nmr spectrum, 485
Loss of C-20 in corrin biosynthesis, 137
Low spin Co(II), vitamin B₁₂, 432
Luminescence:
cobalt-free, corrinoid, 426
corrin, 426
vitamin B₁₂, 426
D-α-Lysine, 328
L-β-Lysine, 328
Macrocycle reactions, corrin, 201-243
Magnetic circular dichroism:
cobalt 15-cyano-7,7,12,12,19-penta-
methylcorrin, 424
cobalt-free corrin, 423
cob(II)inamides, 426
copper cobalamin, 426
dicyanohexamethylcobyrinate, 426
cob(II)inamides, 426
nickel 15-cyano-7,7,12,12,19-penta-
methylcorrin, 424
nickel 7,7,12,12,19-pentamethylcorrin, 424
Magic Mannich, dimethylaminomethylation
of corrin, 213
Magnetic properties, corrin, 330
Methionine synthetase, reaction with cobalt(III)
complexes, 279
Mammalian:
biosynthesis, methylcobalamin, 163
methionine synthetase, 163
MCID, see Magnetic circular dichroism
Me[14]diene N₄, see 5,7,7,12,14,14-
Hexamethyl-1,4,8,11-tetraaza-
cyclotetradeca-4,11-diene)cobalt;
Cobalt complexes
Mechanism:
alkynes, addition, 263
carbon skeleton, 385
cobaloximes, addition to olefins, 264
cobalt complexes, reductive alkylation
electron transfer, 270
cobalt(II) complexes, addition to
olefins, 265
corrin epimerization, 220
enzymic reaction, ethanolamine ammonia-
lyase, vitamin B₁₂, -substrate radical
separation, 453
hydridocobalt complexes, addition to
olefins, 265
hydriopenacyanocobalt, addition to
olefins, 263
lactams (corrin ring), formation, 225
methionine, methyl transfer, 113
model systems, 383
olefins, addition to cobalt(II) complexes,
262
reductive alkylation, cobalt complexes,
254-270
role of model systems, vitamin B₁₂
coenzyme, 528
vitamin B₁₂ coenzyme, methylmalonyl-CoA
mutase, 565
Mechanism of action:
model systems, vitamin B₁₂ coenzyme,
543-582
theory, vitamin B₁₂ coenzyme, 543-582
Mechanism of formation:
dihydrocorbinamide, 226
yellow corrinoids, 35, 229
Me[14]-diene N₄:
pulse radiolysis, 574
structure, 574
Mercaptides:
alkylcobaloximes, reaction with, 311
methyl(diquo)cobaloxime, reaction with
311
Mercury(II):
alkylation:
alkylcobaloximes, 526
alkylcobalt complexes, 526
methylpentacyanocobaltate(III), 526
cobalamines, coordination, 495
cobalt-carbon bond cleavage, 526
methyl transfer, methylcobalamin, 529
methylcobalamin alkylation, 526
methylpentacyanocobaltate(III), 529
stereochemistry, alkylcobalt complexes,
526
Meso-substitution, corrin, 212
Metal complexes, seccorrons, X-ray crystal-
lographic data, 77, 98
Metal-free:
electronic spectrum, corrin, 207, 395
vitamin B₁₂, 211
Metal ions:
adenosylating enzyme, 161
cobalamins, reaction with, 495
Metallation:
corrin, 210-212
descobaltochelalamin, 211
descobaltochelalamide, 211
15-cyano-1,2,2,7,7,12,12-heptamethyl-corrin, 211

Metal-ligand bond angles, 46
Metal-ligand bond lengths, 45
Metalloccorins:
deuteraton, 220
electronic spectrum, 424
magnetic circular dichroism, 424
Metalloenzyme chemistry, 326
Metalfoporphyrins, cobalt-carbon bond, 246
Metal replacement, vitamin B12, 72

Metallos:
icloronization energies, 331
methylation, methylcobalamin, 528
Methane biosynthesis, methylcobalamin, 529
Methane formation, hydroxide and methyl(aquo)corbolxime, 308
Methanolysis, vitamin B12, 236
Methanosarcina barkeri, methylcobalamin biosynthesis, 162

Methionine:
biosynthesis, 162
methionine, chiral methyl, 115
incorporation into:
corrin, 111
13C, 112
methylation, stereochemistry, 113
methyl transfer:
inversion of configuration, 115
mechanism, 113
Methionine formation, S-adenosylmethionine, 329
Methionine synthetase:
activation, 162
mammalian, 163
[13CH3]-L-Methionine: vitamin B12 biology synthesis, 480
CD2-methyl incorporation into:
corrin, 114
13C transfer, 114
8-Methyladenosylcobalamin, 298
5-Methylbenzimidazole, Factor III, 471

Methoxyacrylate, addition to cobalt(I) complexes, 256
Methyl(aquo)corbolxime:
metal-carbon bond, bond lengths, 505
methane formation, hydroxide, 308
photosynthesis, acetaldehyde, 571
reaction with:
carbon dioxide, 571
mercaptides, 311
redox potential, 516
Methyl(aque)pyrnic hepta tert-alcohol:
preparation, 278
structure, 278
three-P-Methylaspartic acid, 328
Methylation:
hydroxide, methylcobaloxime, 529
methy1cobalamin:
homocysteine, 528
mercury(II), 529
metals, 528
N3 methyltetrahydrofolic acid, vitamin B12, 529
stereochemistry, methionine, 113
1-Methylbilane, corrin biosynthesis, 121
2-Methyl-2-butylcobalamin, rate of, 371
1-Methylbutyl-3-ethyl(pyrindine)cobaloxime, rearrangements, 3-methylbutyl-3-
ethyl(pyrindine)cobaloxime, 569
2-Methyl-3-ethyl(pyrindine)cobaloxime, 1-methylbutyl-3-ethyl(pyrindine)-
cobaloxime, rearrangements, 569
Methylcobalamin:
alkylation, mercury(II), 526
biosynthesis:
Clostridium thermosaceticum, 161
E. Coli, 161
Methanosarcina barkeri, 162
NADPH, 162
S. pasteurii, 163
carbon dioxide, reduction to, 528
circular dichroism, 420
complex with, Z-w-acylcanthone-
ethylenediamine, X-ray structure, 349
13C-containing, 288, 301, 326
conversion to vitamin B12 coenzyme, 163
coupling constants, 13C-H, 490
dimethylmercury(II), 528
Methoxyacrylate, addition to cobalt(I) complexes, 256
Methylcobalamin (Cont'd)
electrochemical oxidation, 517
electrochemical reduction, 318
enzyenic reaction, 528
flash photolysis, 300, 335, 363, 525, 553
H2/Pt, reductive cleavage, 317
halogenation, 216
heavy metals, 528
homocysteine, methylation, 528
iodine, cleavage, 316
lactam formation, 226
mammalian, biosynthesis, 163
methylene(III), methylation, 529
metals, methylation, 528
methane, biosynthesis, 528
methyl transfer, thiols, 312
monomethylmercury(II), 526
nmr spectrum:
phosphate, 494
praseodymium, 471, 474, 483
nomenclature, 21
photolysis:
ethane, 300
methyl radicals, 300
vitamin B12, 300, 362, 404
rate of decomposition, 368
reaction with methylmercaptide, 311
spin-lattice relaxation times, 492
thermolysis, 303, 363
vitamin B12 coenzyme:
conversion to, 163
ratio, 161
see also Alkylcobalamins; Alkylcorrins;
Cobalt-carbon bond
Methylcobaloxime:
cob(II)aloximes, photolysis, 301
cyanide, acetonitrile formation, 307
flash photolysis, 405
methyl ion, homocysteine, 529
nmr spectrum (59Co), 490
photolysis, methyleroxocobaloxime, 501, 553
see also Methyl(aquo)cobaloxime
Methylcobalt complexes:
bond lengths, nmr spectroscopy, 506
flash photolysis, 528
Methylcobinamidc:
enzymic reaction, 311
electronic spectrum, temperature varia-
tion, 343, 348, 408
13C-enriched, 484
nmr spectroscopy (13C), a, j3-isomers, 484
Methylcorrinoids:
trans-effect, nmr spectroscopy, 489
a, j3-isomers, 301
Methylocyanocobalamin:
electronic spectrum, 413
nmr spectrum, 468
3-Methylisocycliccarbinyl(pyridine)-
cobaloxime rearrangements, 1-
methyl-but-3-enyl(pyridine)-
cobaloxime, 569
1-Methyl-2,2-diphenylisocyclopropyl-
(pyridine)cobaloxime preparation, 254
N-Methyleneaniline(pyridine)cobaloxime
preparation, 258
a-Methylene glutarate mutase:
model systems, vitamin B12 coenzyme, 567
radical intermediates, 557
reaction pathways, vitamin B12 coenzyme, 570
a-Methylene glutaric acid, 328
a-Methylene mutase, model systems, 532
1-Methyl-heptylcobaloxime, cobalt-carbon
bond, bond dissociation energy, 311
(S)-Methylheptylpyridinatocobaloxime,
iodine cleavage, stereochemistry, 317
Methylisocyanoacetocobalamin, electronic
specrum, 411
p-Methyliaconic acid, 328
Methylmagnesium iodide, heptamethyl-
cobyrinate reaction with, 278
L-Methylmalonyl-CoA, 328
Methylmalonyl-CoA mutase:
carbanion intermediates, 556
enzymatic reaction, 546
mechanism, vitamin B12 coenzyme, 565
MD-calculations, 557
model systems, vitamin B12 coenzyme, 532, 564
reaction pathways, vitamin B12 co-
enzyme, 565, 566
vitamin B12 coenzyme, enzymic reac-
tion, 529
Methylmercaptoica, methylcobalamin
reaction with, 311
Methylmercury isoproxide, vitamin B12
total synthesis, 185
Methylpentacyanocobalate(III), mercuric chloride alkylation, 526
Methylperoxocobaloxime, methylcobaloxime photolysis, 553
L-Methyl-2-phenylethylcobaloxime, cobalt-carbon bond, bond dissociation energy, 511
Methyl(pyridine)bis(acetylacetone)-ethylenediiminecobalt, cobalt-carbon bond, bond lengths, 505
Methyl(pyridine)cobaloxime, cobalt-carbon bond, bond lengths, 505
Methyl radicals: methylcobalamin photolysis, reactions, recombination: cob(II)alamin, 511 with cobalt(II) complexes, 335
vitamin B12 coenzyme, enzymic reactions, 551, 564
aminomutases, 571
bis(salicylaldehyde)ethylenedimine-cobalt(III), 551
capped cobaloximes, 533, 565
cobalt-carbon bond cleavage, 551
comparison to, 504
dioxygenase, 571
electrophilic attack, 513
mechanism, role of, 528
model for corrin, 551
monocarboxylic acid, vitamin B12: bond angles (tables), 45-53
bond distances (tables), 45-53
mechanism, 543-582
a-methyleneglutarate mutase, 564
redox chemistry, 513
modified cobalamins, cobalt-carbon bond cleavage, 65
molecular orbitals, bridged cation, 555
a-Molecular orbitals, corrin, 397
molecular rearrangements, vitamin B12 coenzyme, 545
molecular structure in solution, comparison to X-ray structure by nmr spectroscopy, 482
mono-C-methylated chlorin, structure, 131
monocarboxylic acid, vitamin B12: bond angles (tables), 45-53
bond distances (tables), 45-53
cell dimensions, 93
chemical formula, 93

Model systems: bis(salicylaldehyde)ethylenedimine-cobalt, vitamin B12 coenzyme, 551
cobalt role, 378
diol dehydrase, 532
ligand binding, vitamin B12 coenzyme, 504
mechanism, 383
methylmalonyl-CoA mutase, 532
pKa values, vitamin B12 coenzyme, 504
redox chemistry, vitamin B12 coenzyme, 504
redox potential, vitamin B12 coenzyme, 504
vitamin B12 coenzyme: comparison to, 504
redox chemistry, 513
vitamin B12 coenzyme: alkylcobalt complexes, 551, 564
aminomutases, 571
bis(salicylaldehyde)ethylenedimine-cobalt(III), 551
methylmalonyl-CoA mutase, 564
redox chemistry, 513
modified cobalamins, cobalt-carbon bond cleavage, 65
molecular orbitals, bridged cation, 555
a-Molecular orbitals, corrin, 397
molecular rearrangements, vitamin B12 coenzyme, 545
molecular structure in solution, comparison to X-ray structure by nmr spectroscopy, 482
mono-C-methylated chlorin, structure, 131
monocarboxylic acid, vitamin B12: bond angles (tables), 45-53
bond distances (tables), 45-53
cell dimensions, 93
chemical formula, 93
Methylcobalamin (Cont'd)

- Electrochemical oxidation, 517
- Electrochemical reduction, 318
- Electronic spectrum, 408, 415
- Enzymic reaction, 528
- Flash photolysis, 300, 335, 363, 525, 553
- H/D/HT, reductive cleavage, 317
- Halogenation, 216
- Heavy metals, 528
- Homocysteine, methylation, 528
- Iodine, cleavage, 316
- Lactam formation, 226
- Mammalian, biosynthesis, 163
- Mercury(l), methylation, 529
- Metals, methylation, 528
- Methane, biosynthesis, 528
- Methyl transfer, thiol, 312
- Monomethylmercury(II), 526
- NMR spectrum:
 - pH dependence, 494
 - Praseodymium, 471, 474, 483
- Nomenclature, 21
- Photolysis:
 - Ethane, 300
 - Methyl radicals, 300
- Vitamin B\textsubscript{12}, 300, 362, 404
- Rate of decomposition, 368
- Reaction with methylmercaptide, 311
- Spin-lattice relaxation times, 492
- Thermolysis, 303, 363
- Vitamin B\textsubscript{12} coenzyme:
 - Conversion to, 163
 - Ratio, 161

See also: Alkylcobalamins; Alkylcorrins; Cobalt-carbon bond

Methylcobaloxime:
- Cob(II)aloximes, photolysis, 301
- Cyanide, acetonitrile formation, 307
- Flash photolysis, 405
- Methyl ion, homocystine, 529
- NMR spectrum (59Co), 490
- Photolysis, methylperoxocobaloxime, 301, 553

See also: Methyl(aquo)cobaloxime

Methylcobalt complexes:
- Bond lengths, NMR spectroscopy, 506
- Flash photolysis, 525

Methylcobinamidic:
- Electrochemical reduction, 318
- Electronic spectrum, temperature variation, 343, 348, 408

13C-enriched, 484

NMR spectroscopy (13C), A,0-isomers, 484

Methylcorrinoids:
- Trans-effect, NMR spectroscopy, 489
- \(\text{a,}\beta\)-photoisomerization, 301

Methylkynocobalamin:
- B-band electronic spectrum, 413
- NMR spectrum, 468

3-Methylcyclopropylcarbinyl(pyridine)cobaloxime rearrangements, 1-
methyl-but-3-enyl(pyridine)cobaloxime, 569

1-Methyl-2,2-diphenylcyclopropyl-(pyridine)cobaloxime preparation, 254

N-Methyleneaniline(pyridine)cobaloxime preparation, 258

\(\alpha\)-Methylene glutarate mutase:
- Model systems, vitamin B\textsubscript{12} coenzyme, 567
- Radical intermediates, 557
- Reaction pathways, vitamin B\textsubscript{12} coenzyme, 570

\(\alpha\)-Methylene glutaric acid, 328

\(\alpha\)-Methylene mutase, model systems, 532

1-Methyl-heptylcobaloxime, cobalt-carbon bond, bond dissociation energy, 511

(S)-Methylheptylpyridinatocobaloxime, iodine cleavage, stereochemistry, 317

Methylisocyanatocobalamin, electronic spectrum, 411

\(\beta\)-Methylisocyanic acid, 328

Methylmagnesium iodide, heptamethylcobyrinate reaction with, 278

L-Methylmalonyl-CoA, 328

Methylmalonyl-CoA mutase:
- Carbanion intermediates, 556
- Enzymic reaction, 546
- Mechanism, vitamin B\textsubscript{12} coenzyme, 565
- MD-calculations, 557
- Model systems, vitamin B\textsubscript{12} coenzyme, 532, 564
- Reaction pathways, vitamin B\textsubscript{12} coenzyme, 565, 566
- Vitamin B\textsubscript{12} coenzyme, enzymic reaction, 529

Methylmercaptide, methylcobalamin reaction with, 311

Methylmercury isopropoxide, vitamin B\textsubscript{12} total synthesis, 185
Methylpentacyanocobalate(III), mercuric chloride alkylation, 526
Methylperoxocobaloxime, methylcobaloxime photolysis, 553
l-Methyl-2-phenylethylcobaloxime, cobalt-carbon bond, bond dissociation energy, 511
Methyl(pyridine)bis(acetylacetone)-ethylenediiminecobalt, cobalt-carbon bond, bond lengths, 505
Methyl radicals:
methylcobalamin photolysis, reactions, recombination: cob(II)alamin, 511
with cobalt(II) complexes, 335
vitamin B\(_{12}\), 553
scavenger, vitamin B\(_{12}\), 300
N\(_5\)-methyltetrahydrofolic acid, vitamin B\(_{12}\), methylation, 528

Methyl transfer:
inversion of configuration, methionine, 115
mechanism, methionine, 113
thiol, methylcobalamin, 312
Methyltransferase enzyme:
properties, 135
purification, 135
Methyl(triphenylphosphine)cobaloxime, cobalt-carbon bond, bond lengths, 505
Microbiological assay, vitamin B\(_{12}\), 7
Microbiological formation, yellow corrinoids, 228
Migration of group X, electron transfer, vitamin B\(_{12}\), coenzyme, 555

Model systems:
Molecular orbitals, bridged cation, 555
\(n\times\)Molecular orbitals, corrin, 397
Molecular rearrangements, vitamin B\(_{12}\) coenzyme, 545
Molecular structure in solution, comparison to X-ray structure by nmr spectroscopy, 482
Monoc-C-methylated chlorin, structure, 131
Monocarbocyclic acid, vitamin B\(_{12}\):
bond angles (tables), 45-53
bond distances (tables), 45-53
cell dimensions, 93
chemical formula, 93

Model for corrin, cobaloximes, 419
Model for ethanamine ammonia-lyase, vitamin B\(_{12}\) coenzyme photolysis, 196
Monocarboxylic acid, vitamin 7
structure, 93
torsion around A-D junction, 57
X-ray crystallographic data, 93
see also Vitamin B12
Monocarboxylic acid (E2), 83
Monoclinic model, vitamin B12, epr spectroscopy, 439
Monovalent, see Bicarbonate
Monomethylmercury(II), methylcobalamin, 526
Mutase reactions, vitamin B12 dependent, table, 328
NADH, cobalamin reduction, 157
NADPH, methionine biosynthesis, 162
methylcobalamin biosynthesis, 162
Neocobalin, pK values, steric effects, 489
Neocobinamide, 232, 234. See also Neocorrinoids
Neocobyric acid, total synthesis, 187, 196, 232
Neocorinoids: chromatography, 222
circular dichroism, 222, 225
electronic spectrum, 222
3-epicorrinoids, 224
8-epicorrinoids: biological activity, 225
circular dichroism, 224
13-epicorrinoids, 221
epimerization, 220
optical rotary dispersion, 222
trifluoroacetic acid, epimerization, 222
see also 3-Epicorrinoids; 8-Epicorrinoids; 13-Epicorrinoids; NeovitaminB12
Neopentylcobalamin: homolytic cleavage, thermolysis, 364
isomerization reactions, 375
rate of decomposition, 368
thermolysis, 552
Neopentyl(pyridine)bis(salicylaldehyde- o-phenylenedimine)cobalt, bond dissociation energy, 512
Neophyl rearrangement, organic radicals, 556
Neovitamin B12: biological activity, 224
bond angles, tables, 45-53
bond distances, tables, 45-53
C-13 epimer, 33
cell dimensions, 93
chemical formula, 93
comparison to vitamin B12, 35
conformations, 209
folding, 60
nmr spectrum, 485
planarity deviations, 61
space group, 93
structure, 34, 224
torsion around A-D junction, 57
X-ray crystallographic data, 93
X-ray structure, diagram, 34, 36
see also 13-Epicorrinoids
Neohelvetic series: electronic spectrum, 409
trans-effect, 336
Neurological abnormalities, pernicious anemia, 2
Neutron diffraction:
VitaminB12 coenzyme, 91
Nickel corrin: bond distances, angles, tables, 45-53
folding, 60
planarity, devia ions, 61
torsion around A-D junction, 57
Nickel 1,19-dimethylhexa-dehydrocorrin, catalytic, reduction, 238
Nickel 7,7,12,12,19-pentamethylcorrin: electronic spectrum, 424
magnetic circular dichroism, 424
Nickel(I) 5-cyano-16-ethoxy-1,8,8,13,13-pentamethyl-14-methylene-CD-secocorrin perchlorate:
cell dimensions, 96
chemical formula, 96
space group, 96
X-ray diffraction data, 96
Nickel(I) 5-cyano-7,7,12,12,19-pentamethylcorrin chloride, conformations, 208
Nickel 15-cyano-7,7,12,12,19-pentamethylcorrin chloride, conformations, 208
Nickel 15-cyano-7,7,12,12,19-pentamethylcorrin chloride, conformations, 208
Nickel(II) 15-cyano-7,7,12,12,19-pentamethylcorrin chloride, electronic spectrum, 424
Nickel 15-cyano-7,7,12,12,19-pentamethylcorrin (Cont'd)
magnetic circular dichroism, 424
Nickel(II)-1,2,2,7,7,12,12-heptamethyl-15-cyano-1,19-epoxycorcin perchlorate:
cell dimensions, 97
chemical formula, 97
space group, 97
X-ray diffraction data, 97
Nickel(II) 1,8,8,13,13-pentamethyl-5-cyano-trans-coumar chloride:
cell dimensions, 95
chemical formula, 95
space group, 95
X-ray crystallographic data, 95
Nico nate mononucleotides:
cobalamins, biosynthesis, 153
deamidation, 153
Nitrile hydrolysis, vitamin B12 total synthesis, 191
Nitroalkylcobalamin photolysis, 405
Nitroalkylcobinamide photolysis, 405
Nitroalkylcormins photolysis, epr spectrum, 405
Nitromethane:
cobalt alkylation, 280
reaction with quinhydrone Co(III), 336
Nitrosation:
corrin, 217
vitamin B12, 217
10-Nitrosocobalamin:
electronic spectrum, 217
nomenclature, 17
preparation, 217
Nitrosodurene, reaction with vitamin B12 coenzyme, 298
Nitrosyl chloride, reaction with corrin, 217
Nitrous oxide:
diaz dehydration inhibition, 373
ethanamine ammonia-lyase inhibition, 373
Nitroxides, spin-trapped, 298
Nmr spectroscopy:
biosynthetic studies, 486
cobalamins, isomeric forms, 463-500
cobalt-carbon bond, polarizability, 489
cobalt complexes:
cis-effect, 487
trans-effect, 488
cobalt(II) complexes, 486
cobalt(III) complexes, 486
corrin:
cis-effect, 487
trans-effect, 463-500
5,6-dimethylbenzimidazole:
protonation, 494
trans-effect, 488
electronic structure, corrinoids, 487
fluxionality, cobalamins, 490
methylcobalt complexes, bond lengths, 506
methylcorrinoids:
13C containing, 484
trans-effect, 489
molecular structure in solution, comparison to X-ray structure, 482
nuclear Overhauser effect, 479
pH dependence, cobalamins, 493
structural information, 482
temperature dependence, cobalamins, 490
vitamin B12 biosynthesis, 479
vitamin B12 coenzyme, 465
Nmr spectrum:
aquocobalamin, 468
15C, biosynthetic studies:
dicyanocobalamin, 112
vitamin B12, 112,480
15C-enriched, dicyanocobalamin, 478
C-0 proton, corrin ring, 469
carboxymethylcobalamin, lanthanide shift reagents, 472
chemical shifts:
vitamin B12, 485
vitamin B12 coenzyme, 485
cobalamins, table, 474
cobaloximes, 247
corrin ring, vitamin B12 coenzyme, 469
corrinyl-3, 135
coupling constants, table, 484
cyanocobalamin, a-j-isomers, 484
5'-deoxyadenosyl ligand, vitamin B12 coenzyme, 468, 477
Nmr spectrum (Cont’d)
dicyanocobalamin (table), (13C), 476
dicyanocobinamide, table, (13C), 476
5,6-dimethylbenzimidazole, vitamin B12 coenzyme, 468, 477
ethylcobalamin, 468, table, 474
Factor 111,471,472
1H/2H exchange, corrin ring, 469
dihydrocobalamin, 468, table, 474
2,3’-isoalloxazine-6,5-deoxy-6’-ribofuranosylcobalamin, 486
isopropyl(tricyclohexylphosphine)cobaloxime, 506
isopropyl(triphenylphosphine)cobaloxime, 506
lanthanide shift reagents, corrin ring, 471,482
longitudinal relaxation times, vitamin B12, 485
methylcobalamin, 471, table, 474
methylcobaloxime, 490
methylcyanocobalamin, 468
neovitamin B12, 485
Nuclear Overhauser effect, sirohydrochlorin, octamethyl ester, 125
pH, dependence, methylcobalamin, 494
Praseodymium: aquocobalamin, 483
methylcobalamin, 483
vitamin B12, 484
vitamin B12 coenzyme, 483
propanoimine, vitamin B12 coenzyme, 467
protonated, vitamin B12 coenzyme, 468
ribos:ring, vitamin B12 coenzyme, 467, 478
side chain, corrin ring, 480
sirilactone, hctpmethyl ester, 123
trimethylated isobacteriochlorins, 132
vinylcobalamin, 490
vitamin B12, (13C) table, 476
monocarboxylic acid, 471, 486
vitamin B12 coenzyme: 5’-H-deoxyadenosyl ligand, 471
1H/2H exchange, 468, 469
protonated, 468
vitamin B12 coenzyme (13C) table, 475
vitamin B12 coenzyme, table, 474
vitamin B12, table, 474
vitamin B12 - paramagnetic shifts, 487
vitamin B12, 486
yellow corrinoids, 229, 485
Noble prize, vitamin B12, 2
Nomenclature, vitamin B12 and derivatives, 17-22
1-Norbornyl(pyridine)cobaloxime, preparation, 255
2-Norbornylcobalamin, rate of decomposition, 368
Nuclear Overhauser effect: nmr spectroscopy, 479
sirohydrochlorin, octamethyl ester, nmr spectrum, 125
Nucleophilic attack: cobalt-carbon bond cleavage, 527
cobalt(III) complexes, 284
Nucleophilic displacement, R+ from (alkylcobalt)+, 516
Nucleophilicity: bis(salicylaldehyde)ethylenediamine-cobalt(III) complexes, 523
cob(I)aloximes, 523
cob(I)inamide, 250, 251
cob(I)aloximes, table, 251
definition, 250
diacetylmonomimino diacetylmmono- xamato(III) cobalt(III), 523
effect of axial ligands, cobalt(III) complexes, 252
vitamin B12, 251, 523
Nucleoside analogs, vitamin B12 coenzyme, 160
Nucleosides, conformations, table, 70
Nucleoside triphosphates: adenosylating enzyme, 160
adenosylating, C. tetanomorphum, table, 160
Nucleotides, conformations, table, 70
Nucleotide loop: acid hydrolysis, 234
biosynthetic scheme, 149
Butyryl-CoA dehydrogenase, 149
formylases, 148
glutathione, 152
guanosine diphosphate, 152
Propionibacterium arabinosum, 152
biosynthetic scheme, 149
conformations, 65
reactions, 234-236
Nucleotides, conformations, table, 70
Numbering, vitamin B₁₂ and derivatives, nomenclature, 18

Octadehydrocorrin, nomenclature, 19
Octamethyl ester:
electronic spectrum, sirohydrochlorin, 123
nmR spectrum, nuclear Overhauser effect, sirohydrochlorin, 123
sirioctalone, 122
trimethylated isobacteriochlorin electronic spectrum, 132
2,7,7,12,13,17,18-Octane hylicobacteriochlorin: structure, 136

Olefin addition:
cobaloximes, alkylation, 523
cobalt(I) complexes, alkylation, 523
free radical intermediates, hydridopentacyanocobalt, 518
radical intermediates, hydrido(n-butylphosphine)cobaloxime, 518

Olefin complexes:
2-acetoxyalkylcobaloximes, 575
acid catalysis:
2-hydroxyethylcobaloxime, 575
phenacylcobalamin, 575
cobaloximes, 314
cobalt(I) complexes, acrylonitrile, 575
1,2-dihydroxyethylcobalt, 574
2,2-dihydroxyethylcobalt, 556
structure, 534
Vitamin B₁₂ coenzyme:
enzymic role, 534
ethanolamine ammonia-lyase, 575
glutamate mutase, 549, 571, 575

Olefin:
addition to cobalt(I) complexes, mechanism, 256, 262
alkylcorrin, photolysis, 302
cobalt(I) complexes, addition, pH function, 523
decomposition, alkylcorrin, 365
mechanism:
cobaloximes, addition to, 264
cobalt(I) complexes, addition to, 265
hydridecobalt complexes, addition to, 265
hydridopentacyanocobalt, addition to, 263
pentacyanocobaltate, reaction with, 276
One-electron oxidation, alkylcobalamins, 515, 517
Optically active alkyl ligands, cobaloximes, 268
Optical rotatory dispersion:
neocorrinoids, 222
vitamin B₁₂, 223
Orbital energies:
corrin, 206, 399
vitamin B₁₂, 206
Orbitals, cobalt(I) complexes, 438, 440
Orbital symmetry, vitamin B₁₂ total synthesis, 176
Organic radical interaction:
epr spectrum:
cobalt(I) complexes, 450
enzymic reaction, vitamin B₁₂, 450
separation, vitamin B₁₂, 452
Organic radical recombination, vitamin B₁₂ rate, 525
Organic radicals:
cobalt(I) complexes, reaction with, 271
enzymic reaction, epr spectroscopy, 559
intramolecular 1,2-shifts, 556
neophyl rearrangement, 556
rearrangements, role of cobalt, 531, 533, 556
vitamin B₁₂ coenzyme, enzymic reactions, 545, 547
vitamin B₁₂ oxidation, 376
reduction, 376
Wagner-Meerwein rearrangement, 556
Organic solvent soluble corrin, 236
Organocobalt complexes:
synthesis, 245-294
see also Alkylcobalamins; Alkylcobaloximes; Alkylcorrin; Cobaloximes; Cobalt complexes; Cobalt-carbon bond; Methylcobalamin; Vitamin B₁₂ coenzyme
Organolithium reagents, cobalt(I) complexes, 517
Organometallic chemistry, vitamin B₁₂, 326
Ornithine, 328
Orthoamide, vitamin B₁₂ total synthesis, 378
Outer-sphere electron transfer, Schiff-base complexes, cobalt(II) complexes, 519

Oxidation:
alkylcobalamins, one-electron, 517
alkylclobaloximes, hexachloroiridate, table, 515, 516
carboxylic acids, corrin, 218
chronic acid, corrin, 218
cobalt(III) complexes, carbon monoxide, 515
corrin:
meso-methyl groups, 239
permanganate, 218, 219
2,3-dihydroxy-w-propylcobalamin, periodate, 284
dehydrocobinamidemic, chronic acid, 226
electrochemical, 517
dehydroperoxide, corrin, 218
methylcobalamin, electrochemical, 517
one-electron, alkylclobaloximes, 515
organic radicals, vitamin B₃, 376
vitamin B₁₂, 218
chronic acid, 218
meso-methyl groups, 239
permanganate, 218, 239
Oxidation state, alkylcobalt complexes, formal, 514

Oxidative addition, vitamin B₁₂ coenzyme enzymic reaction, 576

Oxidative cleavage:
corrin, 217-220
succinimides, corrin, 217
vitamin B₁₂, succinimides, 217
Oxime hydrolysis, nitrous acid, vitamin B₁₂ total synthesis, 179

O₂, alkylcobalamin photolysis, role of, 366
Oxogenated vitamin B₁₂, epr spectrum, 458

Oxygen complex structure, vitamin B₁₂, 459

Oxygen sensitivity, vitamin B₁₂ coenzyme, 551

Ozonolysis:
corrin, 218
heptamethylcobyrinic acid, 115
heptamethyl dicyno(10-bromocobyric) nate, 218
secocorrindione, corrin, 219
vitamin B₁₂, total synthesis, 174, 218

P. shermanii, isolation sinohydrochlorin, 122
Palladium(II) alkylcobalt complexes, 527
Palladium(II) 1,2,2,7,7,7,12,12-hexamethyl-1-methylene-AD-secocorrin perchlorate, 96
Palladium(II) 1,2,8,8,12,12-hepta- methyl-5-cyano-frahLS-corrin perchlorate, 95
Paper chromatography, corrin, 249
Paramagnetic shifts:
corrin ring, nmr spectrum, 471
nmr spectrum, vitamin B₁₂, 487
praseodymium, paramagnetic shift reagent, 483
Patterson map, X-ray structure, 97, 98
PBG, see Porphobilogen
Pentacarboxylic acid, electro spectrum, vitamin B₁₂, 417
Pentacyanocobaltate:
alkylation, 502
alkyl halides, re activity towards, 521
1,3-diiodopropane, cyclopropane formation, 519
olefins from alkyl halides, 519
reaction with:
acetylene, 276
alkyl halides, table, 274
olefins, 276
recombination with radical intermediates, 511
reducing agent, 514
structure, 503
Pentadecaalkylcorrin:
circular dichroism, corrin, 237
structure, 237

Pentanal, 4,5-dihydroxypentylcobalamine photolysis, 573
3-Pentylcobalamin, rate of, 371
Periodate oxidation, 2,3-dihydroxy-rh propylcobalamin, 284
Peripheral amide (corrin):
reactions, 233-234
vitamin B₁₂, 230-234
vitamin B₁₂ coenzyme, 41
see also Amide groups, corrin periphery
Pernicious anemia:
nutritional abnormalities, 2
Pernicious anemia (Cont’d)
 vitamin B12, 1
 a:H:
 cobalt-free corrin, electronic spectrum, 401
 decomposition rates:
 alkylcobinamides, 370
 isopropylcobinamides, 370
 dependence:
 cobalamins, nmr spectroscopy, 493
 methylcobinamides, nmr spectrum, 494
 descobaltocorinamide, electronic spectrum, 211
 function, olefins, cobalt(II) complexes, 523
 Phenylcobinamides, olefin π-complexes, 575
 Phenylcobinamidocobinamide, electronic spectrum, 404
 Phenol extraction, corrin, 249
 Phenylacetonitrile, aquocobinamide reaction with, 279
 Phenylacetylene, addition to cobalt(II) complexes, 256
 α-Phenylethylamine, resolving agent, vitamin B12 total synthesis, 153
 1-Phenylethylcobaloximes:
 axial ligands role, activation enthalpy, 511
 cobalt(II)oximes, reaction with, 504
 thermolysis, 304
 1-Phenylethyl(pyridine)cobaloxime:
 bond dissociation energy, axial ligands, role, 510
 equilibrium determination, 508
 cobalt-carbon bond, thermal dissociation, 509
 Phenyl(pyridine)cobaloxime, preparation, Grignard reagent, 271, 278
 Phenyllithium chloride, reaction with corrin, 214
 5’-Phosphate:
 bond angles, tables, vitamin B12, 45-53
 bond distances, tables, vitamin B12, 45-53
 cell dimensions, vitamin B12, 94
 chemical formula, vitamin B12, 94
 planarity deviations, vitamin B12, 61
 space group, vitamin B12, 94
 structure, vitamin B12, 34
 torsion around A-D junction, vitamin B12, 57
 X-ray crystallographic data, vitamin B12, 94
 X-ray structure, diagram, vitamin B12, 34
 see also Vitamin B12
 Phosphocellulose, corrin chromatography, 249
 5-Phosphoribosyl-1-pyrophosphate, cobalamins biosynthesis, 153
 Phosphorylation, [R]-1-amino-2-propionol, 151
 Photosynthesis:
 alkylcorrins, 301
 cobalt-carbon bond, 362
 cobalt(III) complexes, 296
 corrin, 330
 Photometric analysis, vitamin B12:
 ring closure, 196
 total synthesis, 169-200
 Photochemistry:
 cobalt-carbon bond:
 cleavage, 362
 dissociation energy determination, 507
 secocorrrins, metallo, 209
 a, β: Photosomerization, methylcorrinoids, 301
 Photolability:
 alkylcobalamins, base-on, off, 303, 524
 alkylcobalt complexes, 553
 Photolysis:
 acetaldelyde:
 ethanocobinamide and vitamin B12 coenzyme, 298
 ethylene glycol and vitamin B12 coenzyme, 298
 alkylcobalamins, quantum yield, 300-303
 alkylcobaloximes, 300-303, 364
 alkylcobalt complexes, 524, 552
 anaerobic, alkylcobalt complexes, 553
 aristeromycyclocobalamin, 297
 bis(acetylacetone)ethylenedimine-
 cobalt, alkyl complexes, 524
 bis(salicylidene)ethylenedimine-
 cobalt(III): methyl complex, 301
 propyl complex, 302
 bis(salicylidene)ethylenedimine-
 cobalt complexes, alkyl complexes, 524
 carboxylatopentaaminecobalt(III) complexes, 272
 carboxymethylocobalamin, 302
Photolysis (Cont'd)
chloromethylcobalamin, 303
cobaloximes, 419
cobalt-carbon bond, vitamin B\textsubscript{12}, 296
5’-deoxyadenosine, vitamin B\textsubscript{12} coenzyme and thioles, 299
diacetylmonoximeimino diacetylmonoximatoiminopropane-1,3-cobalt(I), alkyl complexes, 524
dihydroxypropylcobalamin: glyceraldehyde, 302
glyceric acid, 302
glycerol, 302
electron spin resonance, vitamin B\textsubscript{12} coenzyme, 296

epr spectrum, nitroalkylcorrin, 405
ethane, methylcobalamin, 300
ethylene, cobalamin, 302
frozen solution, epr, vitamin B\textsubscript{12} coenzyme, 299
3-hydroxyisopropyl(pyridine) cobaloxime, 302
Z’,3’-O-isopropylidene-5’-deoxy uridylic cobalamin, 297
methylcobalamin, 300, 302, 404
methylcobaloxime, cobalt(II)aloximes, 301
methylperoxocobaloxime, methylcobaloxime, 553
methyl radicals, methylcobalamin, 300
model for ethanolamine ammonia lyase, vitamin B\textsubscript{12} coenzyme, 298
nitroalkylcobalamin, 405
nitroalkylcobinamides, 406
olefins, alkylcorrins, 302
pentanal, 4,5-dihydroxypentylcobaloxime, 573
in presence of nitrosodurene, vitamin B\textsubscript{12} coenzyme, 298
in presence of thioles, vitamin B\textsubscript{12} coenzyme, 298
propylcobalamin, 302
propylcobaloxime, 302
quantum yield:
aldehyde and alkylcobaloximes, 525
alkylcobaloximes, 553
vitamin B\textsubscript{12} coenzyme, 303
radical traps, alkylcobaloximes, 553
role of O\textsubscript{2}, alkylcobalamin, 366
spin-traps, alkylcobaloximes, 553
1,4,8,11-tetraazaacyclotetradecane, alkyl complexes, 524
trichloromethylcobalamin, 303
vitamin B\textsubscript{12}, 404
vitamin B\textsubscript{12} coenzyme, 296, 363
vitamin B\textsubscript{12}, methylcobalamin, 300
vitamin B\textsubscript{12} coenzyme, acetone, 302
alkylcobalamins, 302
Photoreduction, cobalt(II) complexes, 296
Pinacyclocobalamin, 371
5,6-dimethylbenzimidazole, 351
pK values:
aldehyde and alkylcobalamin, 54, 351
benzimidazole, vitamin B\textsubscript{12} coenzyme, 351
bis(acetylacetone)ethylenediaminecobalt, 504
bis(salicylaldheyde-o-phenylenedimine) cobalt, 504
7,7’(CH\textsubscript{3})\textsubscript{2} bis(salicylaldheyde-o-phenylenedimine) cobalt, 504
benzimidazole, table, alkylcobalamins, 54, 351
benzimidazole, vitamin B\textsubscript{12} coenzyme, 351
bis(acetylacetone)ethylenediaminecobalt, 504
carboxymethylcobalamin, 316
cobalt, hydrides, 335
corrin, raeso-methyl groups, 239
diacetylmonoximeimino diacetylmonoximatoiminopropane-1,3-cobalt, 504
hydrodioxocobalamin, 506
hydrodipentacyanocobalt, 525
hydrotrioctahydronaphthobalt, 506
stereic effect, neocobalamins, 489
vitamin B\textsubscript{12} coenzyme, model systems, 504
vitamin B\textsubscript{12}, meso-me hyl groups, 234
vitamin B\textsubscript{12}, 364
Planarity:
cobaloximes, 505
cobalt corrins, 505
208
Platinum(IV) alkylcobalt complexes, alkylation, 527
Porphobilinogen, incorporation into corrin, 111
Porphobilinogen, incorporation into corrin, 111
Porphobilinogen, incorporation into corrin, 111
Porphobilinogen deaminase: corrin biosynthesis, 139
decarboxylation, aminomethylbilanes, 118
[b-13C]Porphobilinogen, vitamin B12, bio-
synthesis, 480
Potassium reduction, cobalt complexes, 254
Powder samples, vitamin B12, epr spec-
troscopy, 439
Pseudoerythrin corrin shift reagent, table, 483
Preferred coordination number, cobalt com-
plexes, 504
Preparation: acetoxyalkylcobaloximes, 284
1-adamantyl(pyridine)cobaloxime, 255
8-aminocyano-3-ethyl-3-ethylhexanethyl-
ester c-lactam, 236
8-aminomethylcobalt complexes, 287
benzyl(3-pyridino)methanide(chloro)
cobaloxime, 276
10-bromocobaltamid, 216
β-carboxymethoxybenzoylimidamide, 271
15-carboxy-15-norcorrinamid, 239
10-carboxyhydrotrovitamin B12, 215
Co-n-cyanoc-o-alkylcobamides, 307
cobalt(l) complexes, cobalt-carbon
bond, 271-277
cobyrinic acid-th-diamid, 37
organic, organic solvent soluble, 236
cyclohexyl-3,5,6-trimethylbenzimi-
dazoylcobamide, 255
dansylamidopropylcobalamin, 267
5'-deoxy 1 N6-etheno)-adenosylco-
balamin, 285
2,6-diaminobuta-2vinilcobalamin, 267
5,15-dicarboxy-5,15-dinorcobinamide, 239
dicobaloximes, 268
2,2-dihydroxyethylcobalamin, 28
1-dihydroxyethylcobaloximes, 284
1,2-dioxa-2-cyclopenylmethylcobaloi-
xime, 282
1,3-ethenedacendeybecobalamin, 267
formylcobalamin, 267
formylmethylcobalamin, 283, 315
formylmethylcobamide, 315
Grignard reagent, phenyl(pyridine)cobalo-
xime, 278
haloethinocobalporphyrins, diazo-
methane, 280
heptamethyl diioan-5,15-biancyclo-
byrinat, 239
heptamethyl dioyanocobyrinate, 236
hydricocobalamin, secondary alkyl-
corrinoids, 253,365,552
hydrido-3-w-butylcobalamine)cobalo-
xime, 253
β-hydroxy-n-propyl(pyridine)cobaloxime, 257
4-hydroxy-2,2,6,6-tetramethylpyridine-
N-oxycobamide coenzyme, 267
lactones (corrin ring), 226
methyl(aquo)cobyrinic hepta tert-
 alcohol, 276
l-methyl-2,2-diphenylcyclopropyl
(pyridine)cobaloxime, 254
N-methyleneaniline(pyridine)cobalo-
xime, 258
10-nitrosoacobalamin, 217
l-norbornyl(pyridine)cobaloxime, 255
phenyl(pyridine)cobaloxime, 271
pulse radiolysis, a-hydroxyalkylcobalox-
ime complexes, 273
reactions, 2-hydroxyalkylcobaloximes,
284
rhodium cobyrinic acid-c,c-diamide, 37
sirohydrochlorin, 257
p-trifluoromethylphenyl(pyridine)
cobaloxime, 271
vinylcobaloxime, 261
vinylcobalt porphyrins, diazoalkanes, 280
vitamin B12: carboxylic acids, 231
yellow corrinoids, 215, 228-230
vitamin B12r, 439
yellow corrinoids, gCoPSE, 40
Preurz, gan, 118
Principal axes, vitamin B12, epr spec-
troscopy, 439
Prokaryotes: cobalt-carbon bond biosynthesis, 155-163
vitamin B12, coenzyme biosynthesis, 156-161
Propane-1,2-diol, see Propylene glycol
[1-3H]Propene-1,2-diol, vitamin B12,
coenzyme kinetic isotope effect, 554
Propanolamine, vitamin B12 coenzy me
nmr spectrum, 465, 470
Propargyl alcohol, I, addition to cobalt(l)
complexes, 286
Propionate, 328
Propionate side chain, vitamin B12, 30
Propionibacterium arabinosum, nucleotide
loop biosynthesis, 152

Propionibacterium shermanii:
corrin, biosynthesis, 112
source of corrin, 146

Proposed mechanisms, isomerase
reactions, 383

Propyl-4-quinolocobaloxime, redox poten-
tial, 516

Propylbis(acetylacetone)-ethylenedimine-
cobalt, radical scavengers, thermal
decomposition, 512

Propylbis(salicylaldehyde)-ethylenedi-
iminecobalt, radical scavengers,
thermal decomposition, 512

Propylcobalamin, photolysis, 302
Propylcobaloxime, photolysis, 302

n-Propylcyanocobalamin, electronic
spectrum, 413

Propylene glycol, 328

Propyl(pyridine)bis(salicylaldehyde-o-
phenylenedimine)cobalt, bond
dissociation energy, 512

Propyne, addition to cobalt(I) com-
plexes, 256

Prosthetic group sulfite reductase,
sirome, 128

Protection by peripheral groups,
cobalt-carbon bond, 90

Protection by side chains, vitamin B_{12}
coenzyme cobalt-carbon bond, 41

Protein:
cobalt-carbon bond, labilization, 333
distortion, vitamin B_{12} coenzyme, 373
vitamin B_{12} coenzyme: enzymatic reaction, 555
role of, 329
Protein effects, cobalt-carbon bond
glances, 373

Protonated:
nmr spectrum, vitamin B_{12} coenzyme, 466
radical intermediates, 557

Protonation:
alkylocobalamins, 351

nmr spectroscopy, 5,6-dimethyl-
benzimidazole, 494

vitamin B_{12} coenzyme, 351

vitamin B_{12}, 364

Protoporphyrin IX, structure, 110

Prototrophs, cobalamins, 155

Puckering, corrin ring, 54

Pulse radiolysis:
aacetaldelyde, ethylene glycol, 574
aquocobalamin, 318
Me[14] -diene N4, 574
1,2-dihydroxethyl radical, 574

a-hydroxyalkylcobalt complexes,
presentation, 273

vitamin B_{12}, 318

vitamin B_{12} coenzyme, 318

Purification, methyltransferase enzyme,
135

Purine nuleosides, vitamin B_{12}
coenzyme, 300

Pyrazolopyrimidine nuleos-
idylcobalamin, reac-
tion with cyanide, 307

Pyridinatocobalamin, electro-
tric spectrum, 411

Pyridine complexes, hydroly-
sis, alkyl-
obaloximes, 248

Pyridoxal phosphate:
aminomutases, 329

cofactor, 2,6-diaminoheptane-
mulate, 574

Pyrrolysis:
cobalt-carbon bond, 303

14 N-Quadrupole interaction, vitamin B_{12}, 441

Quantum yield:
alkylocobalamines, photolysis, 524

alkylcobalt complexes, photolysis, 553
photolysis, alkylcobalamins, 303

vitamin B_{12} coenzyme, photolysis, 303

Racemization, X-ray crystallography,
R-a-cyanoethyl(S-a-methyl-
benzylamine)cobaloxime, 88

Radical cations, vitamin B_{12} coenzyme,
ethanolamine ammonia-lyase, 573

Radical doublet intermediates:
enzymatic reaction epr spectroscopy, 450

vitamin B_{12} coenzyme enzymic
reaction, 450

Radical intermediates:
aminomutases, 556
Radical intermediates (Cont'd)
bi(salicylaldehyde-o-phenylene-dimine)cobalt(II), alkylation, 518
cobalt(II) complexes, alkylation, 518
diol dehydrase, 556
enzymic reaction, 2-amino-1-propanol, 450
ethanolamine ammonia-lyase, 556
glutamate mutase, 556
hydrodithio(n-butylphosphine)-cobaloxime, olefin addition, 518
α-methylene glutarate mutase, 557
pentacyanocobaltate, recombination with, 511
protonated, 557
vitamin B12r alkylation, 520
Radical pair recombination, CIDNP measurements, 512
Radical reactions, vitamin B$_{12}$, yellow corrinoids, 229
Radical rearrangements:
ammonium salts (vicinal), 573
1,2-diols, 573
Radical recombination:
corrin, 363
vitamin B$_{12}$, 363
Radical scavengers, alkylcobalt complexes, 301, 512
Radical transfer, cobalt-carbon bond cleavage, 526
Radical traps, alkylcobalt complexes, photolysis, 553
Rapid reaction intermediate:
epr spectrum, 455
epr spectroscopy, 455
ribonucleotide reductase, 455
ethanolamine ammonia-lyase, 455
vitamin B$_{12}$ coenzyme, enzymic reaction, 455
Rate of:
acid catalyzed decomposition:
2-butylicobalamin, 371
isopropylicobalamin, 371
decomposition:
alkylcobalamin, very strained, 365, 368, table, 371
cyclobutylcobalamin, 368
cyclohexylcobalamin, 368
cyclopentylcobalamin, 368
methylcobalamin, 368
neopentylcobalamin, 368
2-norbornylcobalamin, 368
2-methyl-2-butylicobalamin, 371
organic radical recombination, vitamin B$_{12}$, 525
3-pentylcobalamin, 371
pinacylocobalamin, 371
Rates, alkylcobaloxime axial ligand exchange, 248
Rates of hydrolysis, steric, amide groups (corrin periphery), 231
Ratio, methylcobalamin, vitamin B$_{12}$ coenzyme, 161
Reactions pathways:
diol dehydrase, 555, 558
ethanolamine ammonia-lyase, 555
olefin η-complexes:
ammoniumtases, 573
diol dehydrase, 575
vitamin B$_{12}$ coenzyme, enzymic reaction, 555
ehtanolamine ammonia-lyase, 557
glutamate mutase, 571
α-methylene glutarate mutase, 570
methylmalonyl-CoA mutase, 565, 566
Reactions:
alkyl ugars, 295-323
cobalt(II) complexes, 263
5'-deoxyadenosyl radical, formation, 297, 363
2-hydroxycycloleicobaloximes, preparation, 284
methyl radicals, 300
nucleotide loop, 234-236
peripheral amide groups (corrin), 230-234
vitamin B$_{12}$, chloramine T, 215
Reaction with:
acetylene, pentacyanocobaltate, 276
acid:
alkylcobalamin, 313
L,3-dioxy-2-cyclopentylmethylcobalamin, 315
formylmethylcobalamin, 314
hydroxycycloleicobaloxime, 313
4-hydroxyn-butylcobaloxime, 314
3-hydroxyn-propylcobaloxime, 314
(3-hydroxy-5-propynylidyino)cobaloxime, 314
methyl(aquo)cobaloxime, 313
vinylcobalamin, 314
alkali:
adencosylocobaloxime, 307
alkylcobalamin, 306
aristeromycyclobalamin, 306
N-benzoyladenosylcobalamin, 306
Coa-adenyl-Co(3-adenosylcobalamin, 305
Coa-aquo-Co(3-adenosylcobamide, 306
Coa-aquo-Co(3-adenosyl(3,5,6-trimethyl-
benzimidazolecobamide), 306
difluorochloromethylcobalamin, 307
formycyclobalamin, 307
pyrazolopyrimidine nucleosidylcobala-
m, 307
N-tosylcytidylcobalamin, 306
difluorochloromethylcobalamin, 307
formycyclobalamin, 307
pyrazolopyrimidine nucleosidylcobala-
m, 307
trifluoromethylcobalamin, 307
trimethylaminoethylcobalamin, 306
trifluoromethylcobalamin, 307
triethylaminoethylcobalamin, 306
vitamin B12 coenzyme, 305
a,b-dibromoe thyl acetate, vitamin B12
coenzyme, 285
electrophiles, cobalt-carbon bond, 312-317
equilibrium data, cob(II)aloximes, 504
hydroxide:
aristeromycylcobalamin, 307
cob(I)aloxime, trifluoromethyl-
cobaloxime, 309
cob(I)aloxime, 2-hydroxycthylco-
bicaloxime, 310
cyanocthylcobalamin, 310
dihalomethylcobaloximes, 309
difluorochloromethylcobaloxime, 309
difluorochloromethylcobaloxime, 309
(3-hydroxyalkylcobaloximes, 310
trans-2-hydroxy cyclohexy lcobaloxime,
311
hydroxyethylcobalamin, 311
hydroxyethylcobinamide, 311
me hoxycarbonylethylcobalamin, 310
trimethylaminoethylcobalamin, 310
vitamin B12 coenzyme, 307
alkyl halides, cobalt(II) complexes, 273
alkyl halides, table:
pentacyanocobaltate, 274
vitamin B12 coenzyme, 284
aquoxydroxyc Co(III):
acetoine, 336
nitro methane, 336
 alyl halides, vitamin B12 coenzyme, 271
ascorbic acid, vitamin B12 coenzyme, 229
carbonilons:
sisalicylaldehyde ethylenedilimine-
cobalt(III), 279
cobalt(III) complexes, 279
cobaloxime, 1,1-di-(p-chlorophenyl)-
2,2,2-trichloroethane, 266
cobalt(II) complexes:
threo-3,3-dimethylbutil-2-d2,3-fluoromethyl sulfonate, 260
epoxides, 256
etherimine, 257
cobalt(III) complexes:
carbenes, 279
decol, 279
ehtyl vinyl ether, 281
2-hydroxyethyl vinyl ether, 282
malononitrile, 279
cobinamide guanosine difosphosphate,
5,6-dimethylbenzimidazole-5-
nucleotide, 153
corrin:
chloramine T, 215
dimethyl(methylene)ammonium iodide,
213
hydrated electrons, 318
nitrosyl chloride, 217
phenyl trimethyl chloride, 214
cyanide:
an-adenosynocobalamin, 306
L-adenosynocobalamin, 306
alkylcobalamin, 306
aristeromycocobalamin, 306
N-benzoyladenosylcobalamin, 305
Coa-adenyl-Co(3-adenosynocobalamin, 305
Coa-aquo-Co(3-adenosynocobamide, 306
Coa-aquo-Co(3-adenosyl(3,5,6-trimethyl-
benzimidazolecobamide), 306
difluorochloromethylcobalamin, 307
formycyclobalamin, 307
pyrazolopyrimidine nucleosidylcobala-
m, 307
N-tosylcytidylcobalamin, 306
difluorochloromethylcobalamin, 307
formycyclobalamin, 307
pyrazolopyrimidine nucleosidylcobala-
m, 307
trifluoromethylcobalamin, 307
trimethylaminoethylcobalamin, 306
trifluoromethylcobalamin, 307
vitamin B12 coenzyme, 305
a,b-dibromoe thyl acetate, vitamin B12
coezyme, 285
electrophiles, cobalt-carbon bond, 312-317
equilibrium data, cob(II)aloximes, 504
hydrogen cyanide, vitamin B12 coenzyme,
306
hydroxide:
aristeromycocobalamin, 307
cob(II)aloxime, trifluoromethyl-
cobaloxime, 309
b-hydroxypropionylcyclobaloxime, 310
b-hydroxypropionylcyclobaloxime, 310
hydroxyamine:
acetylcobalamin, 312
acetylglycobalamin, 312
glyglycobalamin, 312
iodine, vitamin B12, 226
kinetics:
cob(II)aloximes, 504
cobalt(II) complexes, 273
pentacyanocobaltate, 274
vitamin B12, 274
aquohydroxo Co(III):
acetone, 336
nitromethane, 336
alkyl halides, vitamin B12 coenzyme, 271
ascorbic acid, vitamin B12 coenzyme, 229
ethyl vinyl ether, 281
2-hydroxyethyl vinyl ether, 282
malononitrile, 279
cobinamide guanosine difosphosphate,
5,6-dimethylbenzimidazole-5-
nucleotide, 153
corrin:
chloramine T, 215
dimethyl(methylene)ammonium iodide,
213
hydrated electrons, 318
nitrosyl chloride, 217
phenyl trimethyl chloride, 214
cyanide:
an-adenosynocobalamin, 306
L-adenosynocobalamin, 306
vitamin B12
methyl radicals, 553

Redox chemistry:
alkylcobaloximes, 515
cobalt, unique biologically, 340
diacetylmonoximemino diacetylmono
monoximatoiminopropane-1,3-
cobalt, alkyl complexes, 514
model systems:
vinyl B12, 513
vinyl B12 coenzyme, 513
Schiff-base complexes, Cobalt com-
plexes, 514
vitamin B12 coenzyme, model systems, 504
Reduced forms, sirohydrochlorin, 123

Redox potential:
alkylcobaloximes, table, 516
aquocobalamin, 514
benzyl aquocobaloxime, 516
bis (acetylacetone)ethylenediamine-
cobalt, bis(salicylaldehyde)-
eylenedimincobalt, 504
bis (salicylaldehyde-o-phenylenedimine)-
cobalt, 504
Cobalt(II) complexes, electron-donor
strength, ligand, 251, 504
diacetylmonoximemino diacetyl-
monoximatoiminopropane-1,3-
cobalt, 504
isopropylaquocobaloxime, 516
methyl(aquo)cobaloxime, 516
propylaquocobaloxime, 516
vitamin B12 coenzyme, model systems,
504
Reduced forms, sirohydrochlorin, 123

Reduction:
acetic acid, carbon dioxide, 528
aquocobalamin, enzymic, 157
chromium(l), cobalt complexes, 254
cobalt complexes:
hydrogen, 252
potassium, 254
sodium, 254
sodium amalgam, 254
sodium borohydride, 251
diaquadroinamide, formate, 447
electrochemistry, cobalt complexes, 254
FAD, cobalamins, 157
FMN, cobalamins, 157
LAAH+, heptamethyl dicyanocorbinolate
237
methylocobalamin, carbon dioxide, 528
NADH, cobalamins, 157
nichel 1,19-dimethylcyclohexadienerin, catalytic, 238

Reactions with (Cont’d)
tetrayc anoethylene:
alkylcobalt complexes, 285
cinnamyl(methacryl)cobaloxime, 286
trifluoroacetic acid, vitamin B12, 223
vinyl ethers, cobalt(II) complexes, 281
vinyl B12 coenzyme, nitrosodurene, 258
vitamin B12:
benzyl bromide, 513
5'-deoxyadenosyl radical, 373
vitamin B12:
benzyl bromide, 513
cyclooctyl-i-dide, 261
dimethylfumarate hydromalate, 564
Reactivity toward:
aryl halides, table cobalt(II) complexes,
521
bis (salicylaldehyde-o-phenylenedimine)-
cobalt(II)(py), alkyl halides, 521
pentacyanocobaltate, alkyl halides, 521
triphenylphosphine cobalt(II)aloximes,
alkyl halides, 521
vitamin B12, alkyl halides, 521
Rearrangements:
but-3-ensylocobalamin, cyclopropyl-
carbontolobalamin, 567
but-3-enyl(pyridine)cobaloxime, cyclo-
propylocarbonyl(pyridine)-
cobaloxime, 568
but-3-enyl radical, cyclopropylcarbonyl
radical, 557

cyclopropylcarbonyloxylobalamin, 379
cyclopropylcyclopentadienylcobaloximes, 381
cyclopropylcarbiny radical, 557
1,2-dihydroxyethyl radical, 532
kinetics, cyclopropylcarbonyl radical, 557
1-methyl-6-3-enyl(pyridine)cobaloxime, 3
methylene(cyclopropylcarbiny-
(pyridine)cobaloxime, 569
2-methyl-6-3-enyl(pyridine)cobaloxime, 51
1-methyl-6-3-enyl(pyridine)-
cobaloxime, 569
organic radicals, 531, 556
role of cobalt, organic radicals, 533
Recombination:
alanyl radicals, cobalt, 335
CIDNP measurements, radical pairs, 512
cobalt(II) complexes, methyl radicals, 511
Cobalt(II) complexes, methyl radicals, 335
radical intermediates, pentacyanocobaltate,
511
Rhodium dicyano[cobyrinic acid-a,c-diamide]:
 - cell dimensions, 94
 - chemical formula, 94
 - space group, 94
 - X-ray diffraction data, 94

β-Ribazole, vitamin B₁₂ total synthesis, 198

Ribbonucleotide reductase:
 - affinity chromatography, 268
 - 5'-deoxyadenosine, vitamin B₁₂ coenzyme, 577
 - 5-deoxyadenosyl radical, vitamin B₁₂ coenzyme, 577
 - epr spectroscopy, enzymic reaction, 455
 - epr spectrum, enzymic reaction, 455
 - from Escherichia coli, 545
 - hydrogen exchange, with solvent, 449
 - rapid reaction intermediate, epr spectrum, 455
 - vinyl radical, vitamin B₁₂ coenzyme, 577

Rementor formation, Lactobacillus leichmannii, 439

Reduction (Cont’d)
 - organic radicals, vitamin B₁₂, 376
 - sirohydrochlorin, sirolactone, 122
 - sodium borohydride:
 - cobaloximes, 251
 - thiol, cobalt complexes, 254
 - zinc/acetic acid, vitamin B₁₂, 365
 - Reduction of vitamin B₁₂, ribonucleotide reductase, vitamin B₁₂, 434
 - Reduction to heptanol, heptamethyl dicyano-cobyrinate, 226

Rhodium:
 - incorporation into:
 - 15-cyano-l,2,7,12,12-hyptamethyl-corrin, 211
 - vitamin B₁₂, 211
 - Rhodium analog, vitamin B₁₂, 211
 - Rhodium cobyrinic acid-a,c-diamide:
 - preparation, 37
 - X-ray structure, diagram, 34
 - Rhodium corrin:
 - bond angles, tables, 45-53
 - bond distances, tables, 45-53

Reductive arylation, electron transfer, mechanism, 3 cobalt complexes, 271

Reductive cleavage:
 - alkylcobalamins, vitamin B₁₂, 317
 - carbon monoxide, cobalt-carbon bond, 515
 - cobalt-carbon bond, 317
 - methylcobalamine, H₂/Pt, 317
 - thiol, cobalt-carbon bond, 515

Refractive index, vitamin B₁₂ crystal morphology, 25

Regiospecific aldol, vitamin B₁₂ total synthesis, 179

Resonance Raman spectrum, corrin, 398

Retro-Claisen, vitamin B₁₂ total synthesis, 174

Reversibility:
 - β-elimination, 367
 - vitamin B₁₂ coenzyme, enzymic reaction, 544

R factor, X-ray structure, 97

Rₐ from (alkylcobal)⁺⁺, crystallography, R=-cyanoethyl(S-α-methylbenzylamine)cobaloxime, 88

Rhodium:
 - R factor, X-ray structure, 97
 - Rₐ from (alkylcobal)⁺⁺, crystallography, R=-cyanoethyl(S-α-methylbenzylamine)cobaloxime, 88

R+ from (alkylcobal)+, crystallography, 88

Rhodium analog, vitamin B₁₂, 211

Rhodium cobyrinic acid-a,c-diamide:
 - preparation, 37
 - X-ray structure, diagram, 34

Rhodium corrin:
 - bond angles, tables, 45-53
 - bond distances, tables, 45-53

comparison to, cobalt complexes, 72
folding, 60
planarity deviations, 61
structure, 34
torsion around A-D junction, 57
X-ray crystallographic data, 72

Rhodium dicyano(cobyrinic acid-a,c-diamide):
 - cell dimensions, 94
 - chemical formula, 94
 - space group, 94
 - X-ray diffraction data, 94

β-Ribazole, vitamin B₁₂ total synthesis, 198

Ribbonucleotide reductase:
 - affinity chromatography, 268
 - 5'-deoxyadenosine, vitamin B₁₂ coenzyme, 577
 - 5-deoxyadenosyl radical, vitamin B₁₂ coenzyme, 577
 - epr spectroscopy, enzymic reaction, 455
 - epr spectrum, enzymic reaction, 455
 - from Escherichia coli, 545
 - hydrogen exchange, with solvent, 449
 - rapid reaction intermediate, epr spectrum, 455
 - vinyl radical, vitamin B₁₂ coenzyme, 577
 - vitamin B₁₂ coenzyme, enzymic reaction, 529
 - vitamin B₁₂ formation, Lactobacillus leichmannii, 439
 - vitamin B₁₂ binding to, 442
 - reduction of vitamin B₁₂, 434
 - D-Ribose, vitamin B₁₂ total synthesis, 198
 - Ribose-1-phosphate, cobalamins biosynthesis, 153
 - Ribose ring:
 - conformation, vitamin B₁₂ coenzyme, 550
 - nmr spectrum(C, 478
 - vitamin B₁₂ coenzyme, nmr spectrum, 465

Ring C, vitamin B₁₂ total synthesis, (+) camphor, 184

Ring closure, 190, 196

photochemical, secocorrins, 196

vitamin B₁₂ total synthesis, 197

Ring puckering, vitamin B₁₂ coenzyme, 41

Rings A-D, vitamin B₁₂ total synthesis, 197

Rings B-C, vitamin B₁₂ total synthesis, 197
Ring structure, yellow corrinoids, 37
Role in formation of yellow corrinoids, ascorbic acid, 39
Role in vitamin B\textsubscript{12} chemistry, cobalt, 333, 335
Role of:
cobalt, organic radicals, rearrangements, 333
cobalt-carbon intermediate, carbon-skeleton rearrangements, 382
4s and 4p orbitals, cobalt-carbon bond, 338
model systems, vitamin B\textsubscript{12} coenzyme, mechanism, 528
O\textsubscript{2}, alkylcobalamin photolysis, 366
protein, vitamin B\textsubscript{12} coenzyme, 329
7,7'(CH\textsubscript{3})\textsubscript{2} SALEN, structure, 503
Scavenger, vitamin B\textsubscript{12}, methyl radicals, 300
Schiff-base complexes:
acidity, 506
alkylcobalt complexes, bond dissociation energy, 512
alkylcobalt(V) complexes, 516
cobalt complexes, redox chemistry, 514
cobal(II) complexes, outer sphere electron transfer, 519
Secocorrindione:
corrin ozonolysis, 219
cyclization, corrin, 220
structure, 219
Secocorrrins:
bond angles, distances, tables, 45-53
intermediates in corrin biosynthesis, 116
metal complexes, X-ray diffraction data, 96
metallo, photochemistry, 209
ring closure, photochemical, 196
structure, 78, 116
torsion around A-D junction, 57
total synthesis, 196
X-ray crystallographic data, metal complexes, 77
Secondary alkylcobalamins, 255
Secondary alkylcorrinoids, preparation, 552
Secocyanocobalamin, electronic spectrum, 411
Selenocyanocobalamin, 93
Selenocyanocobalamin, 93
Sephadex corrin chromatography, 249
Shift reagent, corrin ring, gadolinium(III), 472,482
Side chain:
amide, vitamin B\textsubscript{12}, hydrolysis, 33
conformations:
corrin, 208
corrin ring, 52, 54, 63
table, 52, 54
vitamin B\textsubscript{12}, 208
corrin, 63
corrin ring, nmr spectrum(13C), 480
disorder, vitamin B\textsubscript{12} monocarboxylic acid (E2) X-ray structure, diagram, 34
modification, binding to apoenzyme, 65
vitamin B\textsubscript{12} : acetamide, 30
propionamide, 30
vitamin B\textsubscript{12} coenzyme, cobalt-carbon bond, protection, 41
Sign inversion, circular dichroism, corrin, 422
Simulation:
azidocob(II)aminamide, epr spectrum, 445
cob(II)amides, epr spectrum, 446
histidine cob(II)amide, epr spectrum, 445
Single crystals, vitamin B\textsubscript{12} epr spectroscopy, 439
Siroheme:
demetallation, 128
prosthetic group, sulfite reductase, 128
Sirohydrochlorin:
biosynthesis, 126
bislactone, 122
circular dichroism, 122
conversion to, sirolactone, 126
incorporation into:
C tetanomorphum, 126
cob(II)amides, epr spectrum, 446
histidine cob(II)amides, epr spectrum, 445
Siroheme: demetallation, 128
prosthetic group, sulfite reductase, 128
Sirohydrochlorin:
biosynthesis, 126
bislactone, 122
circular dichroism, 122
conversion to, sirolactone, 126
incorporation into:
C tetanomorphum, 126
cob(II)amides, epr spectrum, 446
histidine cob(II)amides, epr spectrum, 445
Siroheme: demetallation, 128
prosthetic group, sulfite reductase, 128
Secondary alkylcobalamins, 255
Secondary alkylcorrinoids, preparation, 552
Secocyanocobalamin, electronic spectrum, 411
Selenocyanide:
selenium location, vitamin B\textsubscript{12}, 27
X-ray diffraction data, vitamin B\textsubscript{12}, 26
Sirohydrochlorin (Cont'd)
siro lactone reduction, 122
structure, 122-124
Siro lactone:
from P. stuartii, 123
heptamethyl ester, nmr spectrum,
125
octamethyl ester, 122
reduction, sirohydrochlorin, 122
sirohydrochlorin:
conversion to, 123
interconversion, 123
structure, 123, 124
see also Corriphyrin-4, structure
Sodium amalgam reduction, cobalt
complexes, 254
Sodium borohydride:
cobaloximes, reduction, 251
reduction, cobalt complexes:
catalysis, 252
reduction, 251
reduction, cobalt complexes, 251
Sodium reduction, cobalt complexes,
254
Sol i on thermolysis, ethylcobalamin,
304
Solvent effects:
electronic spectrum:
vitamin B$_{12}$, 409, 410
vitamin B$_{12}$ coenzyme, 410
Space groups, corrin derivatives, 93-97
Spectrochemical series, mzs-effect,
336
Spin-forbidden transitions, electronic
spectrum, 406
Spin-Hamiltonian:
cobalt(II) complexes, 436
vitamin B$_{12}$, 441
Spin-labelled analogs, vitamin B$_{12}$
coenzyme, 267
Spin-lattice relaxation times:
carboxymethylcobalamin, 492
ethylcobalamin, 492
hydroxyethylcobalamin, 492
methylcobalamin, 492
vitamin B$_{12}$ coenzyme, 492
Spin-trapped nitrooxides, 2, 58
Spin-traps, alkylcobalt complex
photolysis, 553
Spirolicyclic intermediate:
corin biosynthesis, 118
structure, 119
Spiro lactones (corrin ring), 226
Stability:
benzylcobalamin, 255
benzylcobalt(ocetylstyrylporphyrin),
255
cobalt, hydrides, 335
cobalt-carbon bond, vitamin B$_{12}$
coenzyme, 330, 335, 366
Stabilization:
5-deoxyadenosyl carbocation, 549
5-deoxyadenosyl radical, 548
Stable 5-coordinate cobalt(III) com-
plexes, 506
Stable yellow corrinoids, see Yellow
corrinoids
Standard electronic spectrum, vitamin
B$_{12}$, conversion to dicyano-
cobalamin, 395
Stereochemistry:
alkylcobalt complexes, mercury(II),
526
alkynes, addition to, 256
cobaloximes, alkylation, 523
cobalt-carbon bond, halogen
cleavage, 316
cobalt(II) complexes, alkylation,
523
methionine, methylation, 113
(5)-methylhexylpyridinatocobal-
oxime, iodine cleavage, 317
vinyl halides, alkylation, cobalt(II)
complexes, 260
vitamin B$_{12}$, alkylation, 260, 523
Sterespecific thermal cyclization,
vitamin B$_{12}$ total syn hesis,
176
Steric compression:
distortion cobalt-carbon bond, 359
X-ray structure, vitamin B$_{12}$ co-
enzyme, 359
Steric crowding:
 bond length, cobalt-carbon bond,
505
cobalt-carbon bond strengths, 506
vitamin B$_{12}$, 506
vitamin B$_{12}$ coenzyme, 506
Steric distortion, effects, 367
Steric effects:
 bond dissociation energy, cobalt-
carbon bond, 512
cobaloximes, 86
cobalt-carbon bond, bond dis-
sociation energy, 531
Steric effects (Cont'd)

cobalt-carbon bond angles, 355, 372
ligand equilibria, vitamin B12 coenzyme, 341
ligand exchange, alkylcobalamins, 341
neocobalamins, pK values, 489
origin, corrin, 355
on structure, alkylcobalamins, 341
transmission, corrin, 355

Steric interactions:
cobalt-carbon bond, labilization by, 361
with corrin ring, epr spectrum, 5,6-dimethylbenzimidazole, 484
epr spectrum:
cobinamides, 448
vitamin B12, 442, 448

Steric requirements, corrin, axial ligands, 255

Strain orbital:
corrin, 400, 411
vitamin B12 coenzyme, 411, 560
Streptomyces griseus, methylcobalamin biosynthesis, 161

Structural comparison to vitamin B12, vitamin B12 coenzyme, 41

Structural information, nmr spectroscopy, 482

Structure:
adenoine-5'-carboxaldehyde, 297
aminomethylbilane, 118
aquocyanocobyric acid, 205
bis(acetylacetonato)ethylenedimine-cobalt(III), 503
bis(salicylddehyde)ethylenedimine-cobalt, 557
bis(salicylddehyde)ethylenedimine-cobalt(III), 503, 552
bis(salicyldihydroxy)ethylenedimine-cobalt(III), 503
bridged cobaloximes, 87, 269
capped cobaloximes, 533, 565
cobaloxime, 246
cobalt 15-cya-no-2,2,7,7,12,12-hexamethylcoryrin, 424
cobalt 15-cya-no-7,7,12,12-tetramethylcoryrin, 424
cobalt 2,2,7,7,12,12,15-heptamethylcoryrin, 424
isobacteriochlorins, 135
2,2,7,7,12,13,17,18-octamethyliso-
bacteriochlorin, 136
organocobalt complexes, 245-294
work up of reaction mixtures, cobalt-
carbon bond formation, 248
Synthetic analogs, vitamin B₁₂ coenzyme, 332
Synthetic utility, vitamin B₁₂ alkylation, 277
Temperature dependence, cobalamin nmr
spectroscopy, 490
Temperature variation, corrin electronic
spectra, 348, 407
Template reactions, vitamin B₁₂ total
synthesis, 188
Tertiary alkyl, cobaloximes, 254
1,4,8,11-Tetraazacyclotetradecane-
cobalt(III): alkylation, 271, 524
cobalt-carbon bond, energy, 554
cobalt(II) reaction with alkyl halides,
274
model, vitamin B₁₂ coenzyme, 551
structure, 503, 552
vitamin B₁₂ coenzyme model systems,
551
Tetracarboxylic acid: circular dichroism, 421
electronic spectrum, 415
Tetracyanoethylene: reaction with,
285
cinnamyl(imidazole)cobaloxime, reaction
with, 286
Tetracyclic lactam, vitamin B₁₂ total
synthesis, 174
Tetracycline, nomenclature, 19
Tetrahidrocorrin, see Dihydroiso-
bacteriochlorins, Factor I
Tetrahydrofolic acid, 328
Succinyl-CoA, 328
Sulfite and nitrite reductases, isobacterio-
chlorins, 122
Sulfite reductase, siroheme prosthetic
group, 128
Sulfitocobalamin, electronic spectrum, 347,
411
Sulfomethylcyanocobalamin, electronic
spectrum, 413
Sulfonatocobalamin:
halogenation, 216
lactam formation, 226
Sulfur extrusion reactions, vitamin B₁₂
total synthesis, 185, 190
Synthesis:
alkynylcobalt complexes, 279
1-amino-2-propanol, 13
analysis of reaction mixtures, cobalt-
carbon bond, 247
Theory:
epr spectroscopy, 435
vitamin B12 coenzyme, mechanism of action, 543-582
Thermal cleavage, cobalt-carbon bond, 362
Thermal decomposition, alkylcorrins and radical scavenging, 512
Thermal dissociation, 1-phenylethyl-(pyridine)cobaloxime, cobalt-carbon bond, 509
Thermal stability, benzylcobalt complexes, 513
Thermochemical, cobalt-carbon bond dissociation energy determination, 507
Thermodynamics, ligand exchange, table, 5,6-dimethylbenzimidazole, 496
Thermodynamic stability, cobalt-carbon bond, 336
Thermolysis:
alkylcobalamins, cobalt-carbon bond, 303, 525
alkylcobaloximes, 303, 364
alkylcobalt complexes, cobalt-carbon bond, 525, 552
base-on, off, isopropylcobalamin, 552
3-bromopropylcobaloxime, 304
carboxymethylcobaloxime, 304
cobalt-carbon bond, /3-elimination, 304
cyanomethylcobaloxime, 304
cyclohexylcobaloxime, 304
kinetics, isopropylcobalamin, 552
methylcobalamin, 303, 363
neopentylcobaloxime, homolytic cleavage, 364, 552
1-phenylethylcobaloximes, 304
a-styrylcobaloxime, 304
Thioamido alkylation, vitamin B12 total synthesis, 195
Thiomethylcobalamin, reaction with cyanide, 306
Total synthesis of vitamin B12:
acetoin, 172
amide activation, 192
amide deamination, 191
amide hydrolysis, dinitrogen tetroxide, 192
m-anisidine, 172
Arndt-Eistert, 194
Beckmann rearrangement, 180
(+)-camphor, ring C, 174, 184, 193
camphorquinone, 183
Claisen rearrangement, amidoacetal, 184
cobryic acid, 187, 196
coupling, east and west halves, 187
cyanobromide, 1, 172
cyclic 2',3', a-ribazole phosphate, 194
cyclohexyl nitronate, 192
diazomethane esterification, basic conditions, 193
Deits-Alder, Lewis-acid catalyzed, 183
eastern half, 183
episulfides, 185
ester ammonolysis, 192
Hagemann's ester, 184
high pressure liquid chromatography, 190
isoxazoles, 175
methylmercury isopropoxide, 185
neocobryic acid, 187, 196
nitrile hydrolysis, 191
orbital symmetry, 176
orthoaomide, 178
oxime hydrolysis, nitrous acid, 170
Trifluoromethylcobalamin, reaction with cyanide, 307
Trifluoroethylcyanocobalamin, electronic spectrum, 413

Total synthesis of vitamin B₁₂ (Cont'd)
Ozonolysis, 174
α-Phenylethylamine, resolving agent, 183
(-)-α-Phenylethyl isocyanate, 173
Photochemical path, 192
Regioselective acid, 179
Retro-Claisen, 174
β-Ribazole, 198
D-Ribose, 198
Ring closure, 190, 196, 197
Rings A-D, 172
Rings B-C, 183
Secocorins, 196
Steroselective thermal cyclization, 176
Sulfur extrusion reactions, 185, 190
Template reactions, 188
Tetracyclic lactam, 174
Thioamide alkylation, 195
Thiolactam, 185
Thiolactone, desulfurization, decarboxylation, 193
Tricyclic ketone, 173
Transamination, cobalt(i) complexes by alkylcobalt(III) complexes, 527
Transcobalamin-II, 156
Trifluoroacetic acid:
Corrin epimerization, 222
Epimerization, neocorinoids, 222
Vitamin B₁₂, reaction with cyanide, 307

Unique biologically, redox chemistry of cobalt, 340

Unsaturated electrophiles, cobalt(i) complexes, 266
Unsaturated electrophiles, cobalt(i) complexes, addition to cobalt(i) complexes, 257
Trimethylaminoethylcobalamin, reaction with alkali, 310
Trimethylated isobacteriochlorins:
Bioisynthesis, 132
electronic spectrum, octamethyl ester, 132
Isolation, 132
NMR spectrum, 132
From P. shermanii, 132
Structure, 132, 134

Triphenylphosphine cob(II)aloximes, alkyl halides, reactivity towards, 521

Urbilayer III, see Uroporphyrinogen III
Uroporphyrinogen III, interaction with corrin biosynthesis, 118
Uroporphyrinogen III, intact incorporation into corrin, 117
Uroporphyrinogen III, loss of C-20 in corrin biosynthesis, 137
Uroporphyrinogen III, cosynthetase, 117

Vibrational components, electronic spectrum, 403
Vinylicobalamin:
electronic spectrum, 346, 415
NMR spectrum (59Co), 490
Reaction with acid, 314
Vinylicobaloxime preparation, 261
Vinylicobalt porphyrins, diazoalkanes, preparation, 280
cobalt:
- Incorporation into, 211
- Reduction by alkali, 226
- Role in, 333, 335

Cobyric acid, conversion to, 197

Cobyric acid, acid hydrolysis, 230

Color and clinical activity, 8

Comparison (crystallographic) with vitamin B₁₂ coenzyme (table), 53

Comparison to model systems, 504

Conjugated system, 238

Conversion to:
- 15-carboxy-15-norcobinamide, 239
- Cobinamides, 234
- Cobyric acid, 235
- Dicyanocobalamin, standard electronic spectrum, 395
- Heptamethyl dicyano-5,15-bisnorcobyrinate, 239
- Heptamethyl dicyanocobyrinate, 236
- Pentadecaalkylcorrin, 236

Coordination chemistry, 325-392

Copper, incorporation into, 211

Copper analog, 211

Corrin, pentadecaalkyl from, 236

Crystal morphology:
- Pleochroism, 26
- Refractive index, 26

Cyanation, 213

Demetallation, 210

Dependent, table:
- Isomerase reactions, 328
- Mutase reac ions, 328

Deuteration, 212

5,6-dichlorobenzimidazole, X-ray diffrac ion data, 27

Dimethylaminomethylcobalamin, standard electronic spectrum, 207, 393-430, 408, 413, 415, 417

Film, 343

Electrophilic attack, MO-calculations, 212

Epimers, C-3, C-8, C-13, 210

from fermentation, 9

Ferredoxin, decyanation, 163

First crystalization, 3

Fluorescence, 426

Halogenation, cis-effect, 216, 226

Helicity, 209

Hexacarboxylic acid: bond angles (tables), 45-53

Vitamin B₁₂:
- Absolute configuration, 28
- Acetamide side chain, 30
- Acid hydrolysis, 230, 232, 234
- Addition of chlorine, 216
- Air dried crystals, 25
- Amide side chain, nomenclature, 19, 30
- Animal protein factor, 14
- Antipernicious anemia factor, 11
- Aromaticity, 204

Biogenesis:
- [5-¹³C]-aminolevulinic acid, 479
- [²⁰¹⁴C]-L-methionine, 480
- Nmr spectroscopy, 28, 107, 479
- [⁸-¹³C]porphobilinogen, 480
- Bond angles (tables), 45-53
- Bond distances (tables), 45-53
- Bound to intrinsic factor, electronic spectrum, 414
- Bromination, 215
- Buckling, 208

Cobaloximes, X-ray crystallography, 23-106

Cobalt:
- Incorporation into, 211
- Reduction by alkali, 226
- Role in, 333, 335
- Cobyric acid, conversion to, 197
- Cobyric acid, acid hydrolysis, 230
- Color and clinical activity, 8
- Comparison (crystallographic) with vitamin B₁₂ coenzyme (table), 53
- Comparison to model systems, 504
- Conjugated system, 238
- Conversion to:
 - 15-carboxy-15-norcobinamide, 239
 - Cobinamides, 234
 - Cobyric acid, 235
 - Dicyanocobalamin, standard electronic spectrum, 395
 - Heptamethyl dicyano-5,15-bisnorcobyrinate, 239
 - Heptamethyl dicyanocobyrinate, 236
 - Pentadecaalkylcorrin, 236
- Coordination chemistry, 325-392
- Copper, incorporation into, 211
- Copper analog, 211
- Corrin, pentadecaalkyl from, 236
- Crystal morphology:
 - Pleochroism, 26
 - Refractive index, 26
- Cyanation, 213
- Cyanocobalamin, 17
- Dehalogenation, 217
- Demetallation, 210
- Dependent, table:
 - Isomerase reactions, 328
 - Mutase reac ions, 328
- Deuteration, 212
- 5,6-dichlorobenzimidazole, X-ray diffrac ion data, 27
- Dimethylaminomethylcobalamin, standard electronic spectrum, 207, 393-430, 408, 413, 415, 417
- Film, 343
- Electrophilic attack, MO-calculations, 212
- Epimers, C-3, C-8, C-13, 210
- from fermentation, 9
- Ferredoxin, decyanation, 163
- First crystalization, 3
- Fluorescence, 426
- Halogenation, cis-effect, 216, 226
- Helicity, 209
- Hexacarboxylic acid: bond angles (tables), 45-53
Vitamin B₁₂ (Cont’d)
bond distances (tables), 45-53
cell dimensions, 92
chemical formula, 92
deuteriation, 212
electronic spectrum, 417
folding, 60
space group, 92
structure, 28, 204
torsion around A-D junction, 57
X-ray crystallographic data, 92
X-ray diffraction data, 27
history, 1
hydrolysis, side chain, amide, 33
infrared spectrum, 215
7-irradiation, frozen solution, 318
isolation, 3, 24
lactam:
electronic spectrum, 417
formation, 225, 234
X-ray structure (diagram), 42
lactone:
electronic spectrum, 417
formation, 225, 234
X-ray structure (diagram), 42
lactone structure, 227
laser Raman spectrum, 343
luminescence, 426
metal-free, 211
metal replacement, 72
methanolation, 236
meso-methyl groups:
oxidation, 239
pKa values, 234
microbiological assay, 7
monocarboxylic acid:
bond angles (tables), 45-53
bond distances (tables), 45-53
cell dimensions, 93
chemical formula, 93
nmr spectrum, 486
space group, 93
structure, 34
torsion around A-D junction, 57
X-ray crystallographic data, 93
monocarboxylic acid (E2):
neutron diffraction, 33
X-ray diffraction data, 33
X-ray structure (diagram), side chain disorder, 33
nitrosation, 217
nmr spectrum:
¹³C, biosynthetic studies, 112
¹³C-enriched, 471, 472, 474, 480
chemical shifts, 485
(¹³C)table, 476
longitudinal relaxation times, 485
praseodymium, 484
Nobel prize, 2
nomenclature, 17-22
numbering (nomenclature), 18
optical rotatory dispersion, 223
orbital energies, 206
organic solvent soluble, 236
organometallic chemistry, 326
ozonolysis, 218
pentacarboxylic acid, electronic spectrum, 417
peripheral amide groups, reactions, 230-234
permanganate oxidation, 218, 239
pernicious anemia, 1
5'-phosphate:
bond angles (tables), 45-53
bond distances (tables), 45-53
cell dimensions, 94
chemical formula, 94
planar deviations, 61
space group, 94
structure, 34
torsion around A-D junction, 57
X-ray crystallographic data, 94
X-ray structure (diagram), 34
photolysis, 404
planarity deviations, 61
polarization effects, 402
precursor, vitamin B₁₂ coenzyme, 163
preparation, 215
propionamide side chain, 30
pulse radiolysis, 318
pyrolysis, 239
reaction with:
ascorbic acid, 229
iodine, 226
trifluoroacetic acid, 223
redox chemistry, model systems, 513
rhodium, incorporation into, 211
rhodium analog, 211
selenocyanide
selenium location, 27
X-ray diffraction data, 26
side chain conformations, 208
solvent effects, table, electronic spectrum, 410
space group, 93
steric crowding, 506
structure, 24, 170
laser Raman spectrum, 343
low spin Co(II), 432
methylcobalamin photolysis, 300
methyl radicals:
recombination, 553
scavenger, 300
nmr spectrum, 487
nomenclature, 18
organic radical interaction:
epr spectrum enzymic reaction, 450
separation, 452
oxidation, organic radicals, 376
oxygenation, epr spectrum, 458
oxygen complex, structure, 459
paramagnetic shifts, nmr spectrum, 487
preparation, 439
"N quadrupole interaction, 441
radical recombination, 363
rate, organic radical recombinant ion, 525
reaction with alkyl halides table, 274
reduction, organic radicals, 376
reduction of vitamin B_{12}, ribonucleotide reductase, 434
reductive cleavage, alkylcobalamins, 317
spin-Hamiltonian, table, 441
ste
ric interactions, epr spectrum, 442,
448
substrate radical separation, table, ethanolamine ammonia-lyase, 454
vitamin B_{12} coenzyme, enzymic reaction, 530
vitamin B_{12}, 514
X-ray crystallographic data, 69
see also Cob(II)aminic; Cobalt(II) complexes
vitamin B_{12}:
acetylcobalamin, alkali, 311
acidity, 253
adenosine triphosphate, vitamin B_{12}
coenzyme biosynthesis, 523
alkylation:
alcohol halides, 523
kinetics, 259
stereochemistry, 260, 523
alkylcobalamins, photolysis, 302
assay, vitamin B_{12} coenzyme bio-
synthesis, 156-161
benzyl bromide, reaction with, 513
coenzyme function, 147
cyclohexyl-4-d-iodide, reaction with,
Vitamin B\textsubscript{12} (Coord)
5,6-dimethylbenzimidazole, coordination, 486
dimethyl(bromomethyl)malonate, reaction with, 564
electronic spectrum, 418
enzymic formation, 158
isopropylcobalamin, β-elimination, 364
Z',3'-isopropylidenedenadensylcobalamin and t-butoxide, 307
laser Raman spectrum, 343
methylation, N5-methyltetrahydrofolic acid, 528
nmr spectrum, 486
nomenclature, 18
nucleophilicity, 251, 523
photolysis, cobalt-carbon bond, 297
pK values, 364
protonation, 364
reaction with aryl halides, 271
β-substituted alkylcobalamins and alkali, 310
vitamin B\textsubscript{12}, coenzyme, 549
vitamin B\textsubscript{12A}, disproportionation, 514
vitamin B\textsubscript{12B}, 514
see also Cob(I)inamide; Cobalt(I) complexes; Hydroxocobalamin
Vitamin B\textsubscript{12}, coenzyme:
acid, cobalt-carbon bond cleavage, 312
acid decomposition:
cobalt-carbon bond, 366
2,3-dihydroxy-4-pentenal, 312
adenosyl carbene, 549
alkaline decomposition, cobalt-carbon bond, 366
alkylcobalt complexes, model systems, 551, 564
aminomutases:
model systems, 571
reaction pathways, 573
analogues, 5'-deoxy-5'-halonucleosides, preparation, 267, 551
base-on, off, electronic spectrum, 350, 357
biosynthesis:
eukaryotes, 156
prokaryotes, 156
vitamin B\textsubscript{12C}
adenosine triphosphate, 523
assay, 145-167
biotin(salicylideneiminocarbalt(III)), -
model systems, 551
bond angles, tables, 45-53
bond distances, tables, 45-53
capped cobaloximes, model systems, 533, 565
cell dimensions, 93
chemical formula, 93
circular dichroism, 421
cleavage, cobalt-carbon bond, 547-554
cobalamin, conversion to, 156
cobalt-carbon bond:
lengths, 505
bond strength, 513
cleavage, induc ion, 550
model systems, 551
factors affecting bond dissociation energy, 531
models for cleavage, 551
protection by side chains, 30, 41
comparison to model systems, 504
conformation, 551
conformational changes, 374
constraint of axial ligands, 41
conversion to methylcobalamin, 163
5- and 6-coordinate, 346
cyano, D-t-Diozo-2,3-dihydroxy-4-pentenal, 305
5'-deoxyadenosyl carbanion and elimination, cobalt-carbon bond, 549
5'-deoxyadenosyl carbocation, 548
5'-deoxyadenosyl carboxylation, cobalt-carbon bond, 548
5'-deoxyadenosyl radical, cobalt-carbon bond, 548
5'-deoxyadenosine, intermediate, 332, 545
5'-deoxyadenosyl ligand, 13-C, 5'-derivative, 268
5'-H-deoxyadenosyl ligand, nmr spectrum, 471
m-diaminoplatinum(II), coordination, 497
iodohydrolase:
1,2-dihydroxylalkyl radicals, 571
model systems, 571
dissociation, 472
electrocyclic ring opening, enzymic reaction, 576
electronic spectrum:
calculations, 398, 408
film, 343, 350
enzyme bound, 554
enzymic reaction, table, 546
active site thiol, 555
cobalt-carbon bond cleavage, 507
Vitamin B12 coenzyme (Cont'd)
cobalt role, 555
cobalt(II) substrate radical separation, 452
5'-deoxyadenosyl radical, 554
diol dehydrase, 529
dissociation-combination pathway, 555
epr spectroscopy, 449-458, 558
dehydrogenase, 529
diethyl malonyl-CoA mutase, 529
electron transfer, 547
hypothetical pathways, 547
organic radicals, 547
enzymic role, olefin \(\pi \)-complexes, 534
ep signals during catalysis, 332
ethanamine ammonia-lyase: model systems, 571
olefin \(\pi \)-complexes, 575
radical ca ions, 573
reaction pathways, 573
flash photolysis, electronic spectrum, 299,376
flourescent analogs:
2-amino-5-UNH2-6H1, 267, 285, 300
2,6-diaminopurine, 300
2,6-ethenadenosine, 300
formycin, 300
glutamate mutase:
acrylate radical, 571
glycinyl radical, 571
model systems, 570
olefin \(\pi \)-complexes, 571
reaction pathways, 571
halogenation, 216
heterolytic cleavage, cobalt-carbon bond, 548
hexaammincobalt(III) substrate radical separation, 557
diolefin-carbon bond cleavage, 547
electron transfer, 547
hypothetical pathways, 547
organic radicals, 547
enzymic role, diolefin \(\pi \)-complexes, 534
epr signals during catalysis, 332
ethanamine ammonia-lyase: model systems, 571
olefin \(\pi \)-complexes, 575
radical ca ions, 573
reaction pathways, 573
flash photolysis, electronic spectrum, 299,376
flourescent analogs:
2-amino-5-UNH2-6H1, 267, 285, 300
2,6-diaminopurine, 300
2,6-ethenadenosine, 300
formycin, 300
nitrosodurene, reaction with, 298
nrr spectroscopy, 465
nrr spectrum:
chemical shifts, 465
corrin ring, 469
steric crowding, 506
steric effects, ligand equilibria, 341
strain orbital, 569
structural comparison to vitamin B₁₂, 41
structure, 19, 25
substrate radicals, 382
synthetic analogs, 332

1,4,8,11-tetraazacyclotetradecane-
cobalt(III), model, 551
thiols, photolysis, 5'-deoxyadenosine, 299
torsion around A-D junction, 57

vitamin B₁₂:
comparison (crystallographic) with, 53
precursor, 163
vitamin B₁₂, 549
X-ray crystal structure, 550
X-ray diffraction data, 30, 93
X-ray structure, 31, 32, 43, 44
see also Alkylcobalamins

Wagner-Meerwein rearrangement, organic radicals, 556
Water of crystallization, vitamin B₁₂, 68
Work up of reaction mixtures, cobalt-carbon bond synthesis, 248

Xan hocorinoids:
corrin cyclization (peripheral), 225-230
see also Yellow corrinoids
X-ray crystallographic comparison, wet and air-dried vitamin B₁₂, 25, 67
X-ray crystallographic data, corrin derivative derivatives, 23-106
X-ray crystallography:
R-a-cyanoethyl(S-a-methylbenzylamine) -
cobaloxime, racemization, 88
glossary, 97
vitamin B₁₂, cobaloximes 23-106
see also X-ray structure
X-ray structure:
alkylcobaloximes, 359
anomalous dispersion, 99
cylindrical projection, 55, 100
difference electron density map, 99
direct methods, 99
electron density map, 100
methylocobalamin, complex with bis-
acetylacetone-ethylendiamine, 349
neovitamin B₁₂, 34, 36
nmr spectroscopy, molecular structure
in solution, comparison to, 482
X-ray structure (Cont’d)

Patterson map, 98, 101
R factor, 99
rhodium coby ric acid- tf , ,amide, 34
side chain disorder, vitamin B_{12} mono-
carboxylic acid (E2), 33
vitamin B_{12}:
lactam, 40
5’phosphate, 31, 32, 34
vitamin B_{12} coenzyme:
hexacarboxylic acid, 31, 32
steric compression, 31, 32, 43, 44,
359
yellow corrinoids, 38

Yellow corrinoids:
ascorbic acid, role in formation, 39,
229
bond angles, distances, tables, 45-53
cell dimensions, 94, 95
chemical formula, 94, 95
dehydration, 229
folding, 60
gCoPSE:
preparation, 40
structure, 42
X-ray diffraction data, 40
mechanism of formation, 229
microbiological formation, 228

nmm spectrum, 229, 485
\^13C nmr spectrum, 229
planarity, deviations, 61
preparation, vitamin B_{12}, 228-230
radical reactions, vitamin B_{12}, 229
ring structure, 37
space group, 94, 95
structure, 37-40, 228-230
torsion around A-D junction, 57
X-ray diffraction data, 37, 94, 95
X-ray structure, diagram, 38

Zinc:
alkylation, trans-dimethylcobalt(III)
complexes, 527
cobalamin reduction, 253
incorporation into:
15-cyano-1,2,2,7,7,12,12-heptamethylcorrin, 211
vitamin B_{12}, 211
Zinc/acetic acid, vitamin B_{12} reduction,
365
Zinc analog, vitamin B_{12}, 211
Zinc 15-cyano-2,2,7,7,12,12-hexamethy-
1-corrin:
electronic spectrum, 424
structure, 423
Zwitterionic:
cobalt(III) complexes, 286